Titrimetric methods for determining cationic surfactants





surfactants, quaternary ammonium compounds, titrimetric methods of analysis


Aim. To generalize and systematize information on titrimetric methods for determining quaternary ammonium compounds (QACs).
Results and discussion. The review summarizes and systematizes information on the properties of surfactants, provides their classification, shows the main ways of use in the national economy, and their role in pharmacy and medicine. Currently known titrimetric methods for determining cationic surfactants (СS), in particular quaternary ammonium compounds, which are widely used in medicine and pharmacy, are described and summarized.
Conclusions. As a result of the study, the main directions of developing methods for determining QACs by titrimetry methods have been summarized; the disadvantages and advantages of each of the methods described have been shown. In the future, it can be the basis for developing new and more effective methods of analysis.

Supporting Agency

  • The work is a part of the research of the National University of Pharmacy on the topic “Organic synthesis and analysis of biologically active compounds, drug development based on synthetic substances” (the state registration No. 01144000943; the research period 2019 – 2024).


Download data is not yet available.


  1. Paria, S. Surfactant-enhanced remediation of organic contaminated soil and water. Colloid Interface Sci. 2008, 138 (1), 24-58. https://doi.org/10.1016/j.cis.2007.11.001.
  2. Percival, S. L.; Mayer, D.; Malone, M.; Swanson, T.; Gibson, D.; Schultz, G. Surfactants and their role in wound cleansing and biofilm management. Journal of wound care 2017, 26 (11), 680-690. https://doi.org/10.12968/jowc.2017.26.11.680.
  3. Mc Callion, O. N. M.; Taylor, K. M. G.; Thomas, M.; Taylor, A. J. The influence of surface tension on aerosols produced by medical nebulisers. J. Pharm. 1996, 129 (1), 123-136. https://doi.org/10.1016/0378-5173(95)04279-2.
  4. Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena, 4th ed.; John Wiley & Sons, 2012. http://dx.doi.org/10.1002/9781118228920.
  5. Zhang, W.; Dai, X.; Zhao, Y.; Lu, X.; Gao, P. Comparison of the Different Types of Surfactants for the Effect on Activity and Structure of Soybean Peroxidase. Langmuir 2009, 25 (4), 2363-2368. https://doi.org/10.1021/la803240x.
  6. Raeisi, F.; Mousavi, S. M.; Hashemi, S. A.; Malekpour, L.; Bahrani, S.; Lai, C. W.; Chiang, W.-H.; Babapoor, A.; Mazraedoost, S.; Esmaeili, H. Application of biosurfactant as a demulsifying and emulsifying agent in the formulation of petrochemical products. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin; Adetunji, C. O.; Asiri, A. M., Eds.; Elsevier, 2021; pp 399-422.
  7. Domagk, G. Eine neue Klasse von Desinfektionsmitteln. Dtsch Med Wochenschr 1935, 61 (21), 829-832.
  8. Domagk, G. Preserving and disinfecting media. US2108765A, Feb. 15, 1938.
  9. Gillis, A. Surfactants & detergents news. Journal of the American Oil Chemists' Society 1987, 64 (6), 887-893. https://doi.org/10.1007/BF02641502.
  10. Shi, W.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Optical pH Sensor with Rapid Response Based on a Fluorescein-Intercalated Layered Double Hydroxide. Funct. Mater. 2010, 20 (22), 3856-3863. https://doi.org/10.1002/adfm.201001081.
  11. Matile, S.; Vargas Jentzsch, A.; Montenegro, J.; Fin, A. Recent synthetic transport systems. Soc. Rev. 2011, 40 (5), 2453-2474. https://doi.org/10.1039/C0CS00209G.
  12. Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013, 5 (16), 7098-7140. https://doi.org/10.1039/C3NR02176A.
  13. Cationic surfactants: analytical and biological evaluation; Cross, J.; Singer, E. J., Eds.; Surfactant Science Series; Marcel Dekker: New Yor, 1994; Vol. 53.
  14. Paluch, E.; Piecuch, A.; Obłąk, E.; Lamch, Ł.; Wilk, K. A. Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants. Colloids and Surfaces B: Biointerfaces 2018, 164, 34-41. https://doi.org/10.1016/j.colsurfb.2018.01.020.
  15. Wang, L.; Zhao, Q.; Zhang, Z.; Lu, Z.; Zhao, Y.; Tang, Y. Fluorescent Conjugated Polymer/Quarternary Ammonium Salt Co-assembly Nanoparticles: Applications in Highly Effective Antibacteria and Bioimaging. ACS Applied Bio Materials 2018, 1 (5), 1478-1486. https://doi.org/10.1021/acsabm.8b00422.
  16. Shalabi, K.; Helmy, A. M.; El-Askalany, A. H.; Shahba, M. M. New pyridinium bromide mono-cationic surfactant as corrosion inhibitor for carbon steel during chemical cleaning: Experimental and theoretical studies. Mol. Liq. 2019, 293, 111480. https://doi.org/10.1016/j.molliq.2019.111480.
  17. Buurma, N. J. Aggregation and reactivity in aqueous solutions of cationic surfactants and aromatic anions across concentration scales. Current Opinion in Colloid & Interface Science 2017, 32, 69-75. https://doi.org/10.1016/j.cocis.2017.10.005.
  18. Wang, L.; Quan, P.; Chen, S. H.; Bu, W.; Li, Y.-F.; Wu, X.; Wu, J.; Zhang, L.; Zhao, Y.; Jiang, X.; Lin, B.; Zhou, R.; Chen, C. Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano 2019, 13 (8), 8680-8693. https://doi.org/10.1021/acsnano.9b00114.
  19. Botto, C.; Mauro, N.; Amore, E.; Martorana, E.; Giammona, G.; Bondì, M. L. Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. J. Pharm. 2017, 516 (1), 334-341. https://doi.org/10.1016/j.ijpharm.2016.11.052.
  20. Muzzalupo, R.; Pérez, L.; Pinazo, A.; Tavano, L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. J. Pharm. 2017, 529 (1), 245-252. https://doi.org/10.1016/j.ijpharm.2017.06.083.
  21. López-López, M.; López-Cornejo, P.; Martín, V. I.; Ostos, F. J.; Checa-Rodríguez, C.; Prados-Carvajal, R.; Lebrón, J. A.; Huertas, P.; Moyá, M. L. Importance of hydrophobic interactions in the single-chained cationic surfactant-DNA complexation. Colloid Interface Sci. 2018, 521, 197-205. https://doi.org/10.1016/j.jcis.2018.03.048.
  22. Guo, Q.; Zhang, Z.; Song, Y.; Liu, S.; Gao, W.; Qiao, H.; Guo, L.; Wang, J. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. Chemosphere 2017, 168, 599-605. https://doi.org/10.1016/j.chemosphere.2016.11.019.
  23. Edeas, M.; Weissig, V. Targeting mitochondria: Strategies, innovations and challenges: The future of medicine will come through mitochondria. Mitochondrion 2013, 13 (5), 389-390. https://doi.org/10.1016/j.mito.2013.03.009.
  24. Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Lopez, M.; Joseph, J.; Zielonka, J.; Dwinell, M. B. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biology 2018, 14, 316-327. https://doi.org/10.1016/j.redox.2017.09.020.
  25. Zakharova, L. Y.; Pashirova, T. N.; Doktorovova, S.; Fernandes, A. R.; Sanchez-Lopez, E.; Silva, A. M.; Souto, S. B.; Souto, E. B. Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. International Journal of Molecular Sciences 2019, 20 (22), 5534. https://doi.org/10.3390/ijms20225534.
  26. Dhawan, V. V.; Nagarsenker, M. S. Catanionic systems in nanotherapeutics – Biophysical aspects and novel trends in drug delivery applications. Controlled Release 2017, 266, 331-345. https://doi.org/10.1016/j.jconrel.2017.09.040.
  27. Buck, J.; Grossen, P.; Cullis, P. R.; Huwyler, J.; Witzigmann, D. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS Nano 2019, 13 (4), 3754-3782. https://doi.org/10.1021/acsnano.8b07858.
  28. Grijalvo, S.; Puras, G.; Zárate, J.; Sainz-Ramos, M.; Qtaish, N. A. L.; López, T.; Mashal, M.; Attia, N.; Díaz Díaz, D.; Pons, R.; Fernández, E.; Pedraz, J. L.; Eritja, R. Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics 2019, 11 (2), 50. https://doi.org/10.3390/pharmaceutics11020050.
  29. Silva, L. L.; Zapelini, I. W.; Cardoso, D. Catalytic transesterification by hybrid silicas containing CnTA+ surfactants. Today 2020, 356, 433-439. https://doi.org/10.1016/j.cattod.2019.07.030.
  30. Obłąk, E.; Piecuch, A.; Rewak-Soroczyńska, J.; Paluch, E. Activity of gemini quaternary ammonium salts against microorganisms. Appl. Microbiol. Biotechnol. 2019, 103 (2), 625-632. https://doi.org/10.1007/s00253-018-9523-2.
  31. Fait, M. E.; Bakas, L.; Garrote, G. L.; Morcelle, S. R.; Saparrat, M. C. N. Cationic surfactants as antifungal agents. Microbiol. Biotechnol. 2019, 103 (1), 97-112. https://doi.org/10.1007/s00253-018-9467-6.
  32. Rapp, B. E. Microfluidics: modeling, mechanics, and mathematics; Elsevier, 2017.
  33. Takeda, S.; Usui, S. Adsorption of dodecylammonium ion on quartz in relation to its flotation. Colloids and Surfaces 1987, 23 (1), 15-28. https://doi.org/10.1016/0166-6622(87)80246-9.
  34. Schwarz, R.; Heckmann, K.; Strand, J. Adsorption model of pyridinium salts on quartz. Colloid Interface Sci. 1988, 124 (1), 50-56. https://doi.org/10.1016/0021-9797(88)90323-2.
  35. Scowen, R. V.; Leja, J. Spectrophotometric studies on surfactants. I. Interactions between cationic and anionic surfactants. J. Chem. 1967, 45 (22), 2821-2827. https://doi.org/10.1139/v67-455.
  36. Roes, I. J. I.; de Groot, S. In Surfactants in Our World-Today and Tomorrow, Proceedings of the 2nd World Surfactants Congress, Paris, May 24-27, 1988.
  37. Huber, L. Beitr. Abwasser Fisch. Flussbiol. 1979, 31, 203.
  38. Lewis, M. A.; Wee, V. T. Aquatic safety assessment for cationic surfactants. Toxicol. Chem. 1983, 2 (1), 105-118. https://doi.org/10.1002/etc.5620020112.
  39. Krzeminski, S. F.; Martin, J. J.; Brackett, C. K. The environmental impact of a quaternary ammonium bactericide. Household & Personal Products Industry 1973, 22, 24.
  40. Lewis, M. A.; Hamm, B. G. Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Water Res. 1986, 20 (12), 1575-1582. https://doi.org/10.1016/0043-1354(86)90123-5.
  41. Biesinger, K. E.; Stokes, G. N. Effects of Synthetic Polyelectrolytes on Selected Aquatic Organisms. Journal (Water Pollution Control Federation) 1986, 58 (3), 207-213.
  42. Walker, J. R. L.; Evans, S. Effect of quaternary ammonium compounds on some aquatic plants. Marine Pollution Bulletin 1978, 9 (5), 136-137. https://doi.org/10.1016/0025-326X(78)90589-1.
  43. Llenado, R. A.; Jamieson, R. A. Surfactants. Chem. 1981, 53 (5), 174-182. https://doi.org/10.1021/ac00228a012.
  44. Gąsiorowska, M.; Wróblewska, E. K. Two-Phase Titration Method for Cationic Surface Active Agents Determination with Use of 5-(3-Bromo-4-hydroxy-5-methoxyphenyl)-7,7-dimethyl-7H-indolo[1,2-a]quinolinium Perchlorate Dye. Tenside Surfactants Detergents 2012, 49 (1), 23-25. https://doi.org/10.3139/113.110160.
  45. Biswas, S.; Pal, A. Spectrophotometric determination of cationic surfactants in aqueous media using chrome azurol S as colour forming agent and 1-butanol as extracting solvent. Talanta 2020, 206, 120238. https://doi.org/10.1016/j.talanta.2019.120238.
  46. Schnee, V. P.; Palmer, C. P. Cationic surfactants for micellar electrokinetic chromatography: 1. Characterization of selectivity using the linear solvation energy relationships model. ELECTROPHORESIS 2008, 29 (4), 767-776. https://doi.org/10.1002/elps.200700494.
  47. Lange, K. R. Poverhnostno-aktivnye veshchestva. Sintez, svojstva, analiz, primenenie [Surfactants: synthesis, properties, analysis, and application, in Russian]; Professiya: St. Petersburg: Professiya, 2004.
  48. Price, R.; Wan, P. Determination of Quaternary Ammonium Compounds by Potentiometric Titration with an Ionic Surfactant Electrode: Single-Laboratory Validation. AOAC Int. 2019, 93 (5), 1542-1552. https://doi.org/10.1093/jaoac/93.5.1542.
  49. Mousavi, Z. E.; Butler, F.; Danaher, M. Validation of a Simple Spectrophotometric Method for the Measurement of Quaternary Ammonium Compound Residue Concentrations in Food Production Facility. Food Analytical Methods 2013, 6 (5), 1265-1270. https://doi.org/10.1007/s12161-012-9537-9.
  50. The United States Pharmacopeia USP 24, the national formulary NF19; United States Pharmacopeial Convention: Rockville, MD,
  51. Brown, E. R. A Specific Method of Assay of Strong Solutions of Benzalkonium Chloride and Other Quaternary Ammonium Germicides. Pharm. Pharmacol. 2011, 15 (1), 379-385. https://doi.org/10.1111/j.2042-7158.1963.tb12801.x.
  52. Hilp, M.; Zembatova, S. Cetylpyridinium tetrachlorozincate as standard for tenside titration. Analytical methods with 1,3-dibromo-5,5-dimethylhydantoin (DBH) in respect to environmental and economical concern, part 19. Pharmazie 2004, 59 (8), 615-617.
  53. Miller, J. H. M. Determination of halide acid salts of organic bases and quaternary ammonium compounds by titration. Pharm. Biomed. Anal. 1989, 7 (6), 771-775. https://doi.org/10.1016/0731-7085(89)80123-2.
  54. Schmitt, T. M. Analysis of surfactants, 2nd; Surfactant Science Series; Marcel Dekker: New York, 2001; Vol. 96.
  55. Hartley, G. S. 216. Azo-indicators with a quaternary ammonium group. Journal of the Chemical Society (Resumed) 1937, 1026-1029. https://doi.org/10.1039/JR9370001026.
  56. Hartley, G. S.; Runnicles, D. F.; Donnan, F. G. The determination of the size of paraffin-chain salt micelles from diffusion measurements. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1938, 168 (934), 420-440. https://doi.org/10.1098/rspa.1938.0181.
  57. Epton, S. R. A Rapid Method of Analysis for Certain Surface-Active Agents. Nature 1947, 160 (4075), 795-796. https://doi.org/10.1038/160795b0.
  58. Preston, J. M. Tensimetric Analysis of Surface-active Electrolytes. Journal of the Society of Dyers and Colourists 1945, 61 (7), 165-166. https://doi.org/10.1111/j.1478-4408.1945.tb02359.x.
  59. Cui, L.; Puerto, M.; López-Salinas, J. L.; Biswal, S. L.; Hirasaki, G. J. Improved Methylene Blue Two-Phase Titration Method for Determining Cationic Surfactant Concentration in High-Salinity Brine. Chem. 2014, 86 (22), 11055-11061. https://doi.org/10.1021/ac500767m.
  60. Cross, J. T. The identification and determination of cationic surface-active agents with sodium tetraphenylboron. Analyst 1965, 90 (1071), 315-324. https://doi.org/10.1039/AN9659000315.
  61. Handbook of Detergents, Part B: Environmental Impact; Zoller, , Ed.; Surfactant Science Series; Marcel Dekker: New York, 2004; Vol. 121.
  62. Waldhoff, H.; Scherler, D.; Bütfering, L. Analyse von Tensiden. In Analytiker-Taschenbuch; Günzler, H.; Bahadir, A. M.; Danzer, K.; Engewald, W.; Fresenius, W.; Galensa, R.; Huber, W.; Linscheid, M.; Schwedt, G.; Tölg, G., Eds.; Springer Berlin Heidelberg: Berlin, 1999; pp 251-289.
  63. Sakač, N.; Madunić-Čačić, D; Karnaš, M; Đurin, B; Kovač, I; Jozanović, The Influence of Plasticizers on the Response Characteristics of the Surfactant Sensor for Cationic Surfactant Determination in Disinfectants and Antiseptics. Sensors 2021, 21 (10), 3535. https://doi.org/10.3390/s21103535.
  64. Battaglini, G. T. Assay of quaternary ammonium antimicrobial compounds by aqueous potentiometric titration. Journal of Surfactants and Detergents 2002, 5 (2), 117-121. https://doi.org/10.1007/s11743-002-0210-4.
  65. Surface active agents – Detergents – Determination of cationic-active matter content – Part 1: High-molecular-mass cationic-active matter; ISO 2871-1:1988; International Organization for Standardization: Genève, 1988.
  66. Rechovyny poverkhnevo-aktyvni. Zasoby myini. Metod vyznachennia vmistu kation-aktyvnykh rechovyn. Chastyna 2. Kation-aktyvni rechovyny z nyzkoiu molekuliarnoiu masoiu (mizh 200 i 500) (ISO 2871-2:2010, IDT) [Surface-active substances. Detergents. Method for determining the content of cation-active substances. Part 2. Cation-active substances with a low molecular weight (between 200 and 500) (ISO 2871-2:2010, IDT), in Ukrainian]; DSTU ISO 2871-2:2015; State enterprise "Ukrainian scientific research and training center for problems of standardization, certification and quality": Kyiv, 2015.
  67. Selig, W. The potentiometric titration of surfactants and soaps using ion-selective electrodes. Fresenius' Zeitschrift für analytische Chemie 1980, 300 (3), 183-188. https://doi.org/10.1007/BF00488331.
  68. Yuan, G.-y.; Hou, J.-r.;  Liu, B.-x.; Luo, Y.-y. Preparation and Application of Cationic Surfactant Ion-selective Electrode. Tenside Surfactants Detergents 2013, 50 (3), 204-208. https://doi.org/10.3139/113.110250.
  69. Jozanović, M.; Sakač, N.; Karnaš, M.; Medvidović-Kosanović, M. Potentiometric Sensors for the Determination of Anionic Surfactants – A Review. Rev. Anal. Chem. 2021, 51 (2), 115-137. https://doi.org/10.1080/10408347.2019.1684236.
  70. Madunić-Čačić, D.; Sak-Bosnar, M.; Galović, O.; Sakač, N.; Matešić-Puač, R. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor. Talanta 2008, 76 (2), 259-264. https://doi.org/10.1016/j.talanta.2008.02.023.
  71. Samardžić, M.; Sak-Bosnar, M.; Madunić-Čačić, D. Simultaneous potentiometric determination of cationic and ethoxylated nonionic surfactants in liquid cleaners and disinfectants. Talanta 2011, 83 (3), 789-794. https://doi.org/10.1016/j.talanta.2010.10.046.
  72. Mohamed, G. G.; Ali, T. A.; El-Shahat, M. F.; Al-Sabagh, A. M.; Migahed, M. A.; Khaled, E. Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes. Chim. Acta 2010, 673 (1), 79-87. https://doi.org/10.1016/j.aca.2010.05.016.
  73. Mohamed, G. G.; Ali, T. A.; El-Shahat, M. F.; Al-Sabagh, A. M.; Migahed, M. A. New Screen-Printed Ion-Selective Electrodes for Potentiometric Titration of Cetyltrimethylammonium Bromide in Different Civilic Media. Electroanalysis 2010, 22 (21), 2587-2599. https://doi.org/10.1002/elan.201000096.
  74. Mohamed, G. G.; Ali, T. A.; El-Shahat, M. F.; Migahed, M. A.; Al-Sabagh, A. M. Novel screen-printed electrode for the determination of dodecyltrimethylammonium bromide in water samples. Drug testing and analysis 2012, 4 (12), 1009-1013. https://doi.org/10.1002/dta.366.
  75. Sanan, R.; Mahajan, R. K. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide–sodium dodecylsulfate. Colloid Interface Sci. 2013, 394, 346-352. https://doi.org/10.1016/j.jcis.2012.12.051.
  76. Mohamed, G. G.; El-Shahat, M. F.; Al-Sabagh, A. M.; Migahed, M. A.; Ali, T. A. Septonex–tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations. Analyst 2011, 136 (7), 1488-1495. 10.1039/C0AN00662A.




How to Cite

Blazheyevskіy M. Y.; Bulska, E. J.; Tupys, A. M.; Koval’ska, O. V. Titrimetric Methods for Determining Cationic Surfactants. J. Org. Pharm. Chem. 2022, 20, 12-24.



Review Articles