The Study of the Carbohydrate Composition of Cetraria islandica (L.) Ach. Thalli Harvested in Ukraine

Authors

DOI:

https://doi.org/10.24959/ophcj.22.267653

Keywords:

Cetraria islandica, thalli, component composition, free and total monosaccharides, GC-MS

Abstract

Aim. To study the component composition of free and total monosaccharides in the raw material of Cetraria islandica (L.) Ach. harvested in Ukraine.
Materials and methods. The component composition of free and total monosaccharides in the raw material was determined by gas chromatography with mass-spectrometric detection (GC-MS).
Results and discussion. Among the free monosaccharides, the presence of D-perseitol, (6.99 mg g–1) and D-mannitol (1.12 mg g–1) was determined. Among the total monosaccharides, the content of D-glucose (203.64 mg g–1) prevailed. D-mannose (53.74 mg g–1), D-galactose (51.71 mg g–1), D-xylose (0.83 mg g–1) and L-rhamnose (0.53 mg g–1) were found in lower quantities, as well as polyatomic alcohols – D-dulcitol (8.46 mg g–1) and D-mannitol (3.10 mg g–1).
Conclusions. For the first time, the component composition of free and total monosaccharides in the raw material of C. islandica harvested in Ukraine has been determined. The results obtained will be used as a component of the comprehensive systematic study of the raw material of C. islandica harvested in Ukraine.

Supporting Agency

  • The work is a part of the research of the National University of Pharmacy on the topic “The pharmacognostic study of the medicinal plant raw material and development of phytotherapeutic agents based on it” (the state registration No. 0114U000946).

Downloads

Download data is not yet available.

References

  1. Kim, M.; Kim, S.-R.; Park, J.; Mun, S.-H.; Kwak, M.; Ko, H.-J.; Baek, S.-H. Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo. Polym. 2022, 281, 119057. https://doi.org/10.1016/j.carbpol.2021.119057.
    |
  2. Tan, J.; Cui, P.; Ge, S.; Cai, X.; Li, Q.; Xue, H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. Sonochem. 2022, 84, 105966. https://doi.org/10.1016/j.ultsonch.2022.105966.
    |
  3. Slobodianiuk, L.; Budniak, L.; Marchyshyn, S.; Kostyshyn, L.; Zakharchuk, O. Analysis of carbohydrates in Saponaria officinalis L. using GC/MS method. Pharmacia 2021, 68 (2), 339-345. https://doi.org/10.3897/pharmacia.68.e62691.
  4. Qu, J.; Huang, P.; Zhang, L.; Qiu, Y.; Qi, H.; Leng, A.; Shang, D. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship. J. Biol. Macromol. 2020, 161, 24-34. https://doi.org/10.1016/j.ijbiomac.2020.05.196.
    |
  5. Yin, M.; Zhang, Y.; Li, H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Frontiers in Immunology 2019, 10. https://doi.org/10.3389/fimmu.2019.00145.
    |
  6. Park, H.-B.; Hwang, J.; Zhang, W.; Go, S.; Kim, J.; Choi, I.; You, S.; Jin, J.-O. Polysaccharide from Codium fragileInduces Anti-Cancer Immunity by Activating Natural Killer Cells.   Drugs 202018, 626. https://doi.org/10.3390/md18120626.
    |
  7. Barbosa, J. R.; Carvalho Junior, R. N. d. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Polym. 2020, 246, 116613. https://doi.org/10.1016/j.carbpol.2020.116613.
    |
  8. Shrestha, G.; St. Clair, L. L.; O'Neill, K. L. The Immunostimulating Role of Lichen Polysaccharides: A Review. Phytotherapy Research 2015, 29 (3), 317-322. https://doi.org/10.1002/ptr.5251.
    |
  9. Olafsdottir, E. S.; Ingólfsdottir, K. Polysaccharides from Lichens: Structural Characteristics and Biological Activity. Planta Med. 2001, 67 (03), 199-208. https://doi.org/10.1055/s-2001-12012.
    |
  10. Spribille, T.; Tagirdzhanova, G.; Goyette, S.; Tuovinen, V.; Case, R.; Zandberg, W. F. 3D biofilms: in search of the polysaccharides holding together lichen symbioses. FEMS Microbiol. Lett. 2020, 367 (5). https://doi.org/10.1093/femsle/fnaa023.
    |
  11. Ingólfsdóttir, K.; Jurcic, K.; Wagner, H. Immunomodulating polysaccharides from aqueous extracts of Cetraria islandica (Iceland moss). Phytomedicine 1998, 5 (5), 333-339. https://doi.org/10.1016/S0944-7113(98)80014-7.
  12. Surayot, U.; Yelithao, K.; Tabarsa, M.; Lee, D.-H.; Palanisamy, S.; Marimuthu Prabhu, N.; Lee, J.; You, S. Structural characterization of a polysaccharide from Certaria islandica and assessment of immunostimulatory activity. Process Biochem. 2019, 83, 214-221. https://doi.org/10.1016/j.procbio.2019.05.022.
  13. Svihus, B.; Ø, H. Lichen Polysaccharides and Their Relation to Reindeer/Caribou Nutrition. Journal of Range Management 2000, 53 (6), 642-648. https://doi.org/10.2307/4003160.
  14. Salama, M. E.-D.; Amani, W. N. Cetraria Islandica as a Pulmonary Cytoprotective and Supportive Herbal Remedy for Lung Complications Related to COVID-19. Scholars International Journal of Traditional and Complementary Medicine 2021, 4 (10), 168–173.
  15. Ingolfsdottir, K. Bioactive compounds from Iceland moss. In Bioactive Carbohydrate Polymers; Paulsen B. S., Ed.; Springer Dordrecht, 2000; pp 25–36. https://doi.org/10.1007/978-94-015-9572-8_3
  16. Zacharski, D. M.; Esch, S.; König, S.; Mormann, M.; Brandt, S.; Ulrich-Merzenich, G.; Hensel, A. β-1,3/1,4-Glucan Lichenan from Cetraria islandica (L.) ACH. induces cellular differentiation of human keratinocytes. Fitoterapia 2018, 129, 226-236. https://doi.org/10.1016/j.fitote.2018.07.010.
    |
  17. Sánchez, M.; Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. The Genus Cetraria str.—A Review of Its Botany, Phytochemistry, Traditional Uses and Pharmacology. Molecules202227, 4990. https://doi.org/10.3390/molecules27154990.
    |
  18. Krämer, P.; Wincierz, U.; Grübler, G.; Tschakert, J.; Voelter, W.; Mayer, H. Rational approach to fractionation, isolation, and characterization of polysaccharides from the lichen Cetraria islandica. Arzneimittel-Forschung 1995, 45 (6), 726-731.7646581
    |
  19. Freysdottir, J.; Omarsdottir, S.; Ingólfsdóttir, K.; Vikingsson, A.; Olafsdottir, E. S. In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. International Immunopharmacology 2008, 8 (3), 423-430. https://doi.org/10.1016/j.intimp.2007.11.007.
    |
  20. Olafsdottir, E. S.; Ingolfsdottir, K.; Barsett, H.; Smestad Paulsen, B.; Jurcic, K.; Wagner, H. Immunologically active (1→3)-(1→4)-α-D-Glucan from Cetraria islandica. Phytomedicine 1999, 6 (1), 33-39. https://doi.org/10.1016/S0944-7113(99)80032-4.
    |
  21. Ingolfsdottir, K.; Jurcic, K.; Fischer, B.; Wagner, H. Immunologically Active Polysaccharide from Cetraria islandica. Planta Med. 1994, 60 (06), 527-531. https://doi.org/10.1055/s-2006-959564.
    |
  22. Kobernik, A. O.; Kravchenko, I. A.; Chervonenko, O. F.; Myhaylova, T. V.; Nabych, M. Identifikatsiya biologicheski aktivnykh veshchestv v sloyevishche Cetraria islandica [The identification of active compound content in the thallus Cetraria islandica, in Russian]. Aktualni problemy transportnoi medytsyny 2015, 2, 144–148.
  23. Guan, J.; Yang, F.-Q.; Li, S.-P. Evaluation of Carbohydrates in Natural and Cultured Cordyceps by Pressurized Liquid Extraction and Gas Chromatography Coupled with Mass Spectrometry. Molecules 2010, 15, 4227-4241. https://doi.org/10.3390/molecules15064227.
    |
  24. Chen, Y.; Xie, M.-Y.; Wang, Y.-X.; Nie, S.-P.; Li, C. Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography. Phytochem. Anal. 2009, 20 (6), 503-510. https://doi.org/10.1002/pca.1153.


    |

Downloads

Published

2023-05-31

How to Cite

(1)
Shpychak, A. O.; Khvorost, O. P. The Study of the Carbohydrate Composition of Cetraria Islandica (L.) Ach. Thalli Harvested in Ukraine. J. Org. Pharm. Chem. 2023, 20, 21-26.

Issue

Section

Original Researches