Biological Activities of Tetrahydroisoquinolines Derivatives

Authors

DOI:

https://doi.org/10.24959/ophcj.23.268358

Keywords:

tetrahydroisoquinoline, assessment of biological activity, structure-activity relationship, molecular docking

Abstract

1,2,3,4-Tetrahydroisoquinoline (THIQ) is a common scaffold of many alkaloids isolated from several plants and mammalian species. THIQ derivatives possess a broad spectrum of biological activities, including antitumor, antitubercular, antitrypanosomal, antibacterial, anti-HIV, anti-inflammatory, anti-Alzheimer, and anticonvulsant ones.
Aim. To cover updated studies on the biological properties of THIQ derivatives, as well as their structure-activity relationship (SAR), in order to highlight the effect of diverse functional groups responsible for the manifestation of the desired activity.
Results and discussion. We have presented the review on biological activities of THIQ. The SAR studies show that the electron-donating, electron-withdrawing and some heterocyclic functional groups on the backbone plays a vital role in modulating the biological potential of the compounds synthesized.
Conclusions. This review will help pharmaceutical researchers to synthesize novel and potent compounds containing THIQ scaffold.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Wen, J.; Tan, R.; Liu, S.; Zhao, Q.; Zhang, X. Strong Brønsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a Rh-thiourea chiral phosphine complex via anion binding. Chem. Sci. 2016, 7 (5), 3047-3051. https://doi.org/10.1039/c5sc04712a.
  2. Bringmann, G.; Brun, R.; Kaiser, M.; Neumann, S. Synthesis and antiprotozoal activities of simplified analogs of naphthylisoquinoline alkaloids. Eur. J. Med. Chem. 2008, 43 (1), 32-42. https://doi.org/10.1016/j.ejmech.2007.03.003.
    |
  3. Fayez, S.; Feineis, D.; Ake Assi, L.; Kaiser, M.; Brun, R.; Awale, S.; Bringmann, G. Ancistrobrevines E-J and related naphthylisoquinoline alkaloids from the West African liana Ancistrocladus abbreviatus with inhibitory activities against Plasmodium falciparum and PANC-1 human pancreatic cancer cells. Fitoterapia 2018, 131, 245-259. https://doi.org/10.1016/j.fitote.2018.11.006.
    |
  4. Kumar, A.; Katiyar, S. B.; Gupta, S.; Chauhan, P. M. Syntheses of new substituted triazino tetrahydroisoquinolines and beta-carbolines as novel antileishmanial agents. Eur. J. Med. Chem. 2006, 41 (1), 106-113. https://doi.org/10.1016/j.ejmech.2005.09.007.
    |
  5. Lu, G. L.; Tong, A. S. T.; Conole, D.; Sutherland, H. S.; Choi, P. J.; Franzblau, S. G.; Upton, A. M.; Lotlikar, M. U.; Cooper, C. B.; Denny, W. A.; Palmer, B. D. Synthesis and structure-activity relationships for tetrahydroisoquinoline-based inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2020, 28 (22), 115784. https://doi.org/10.1016/j.bmc.2020.115784.
    |
  6. Gabet, B.; Kuo, P. C.; Fuentes, S.; Patel, Y.; Adow, A.; Alsakka, M.; Avila, P.; Beam, T.; Yen, J. H.; Brown, D. A. Identification of N-benzyltetrahydroisoquinolines as novel anti-neuroinflammatory agents. Bioorg. Med. Chem. 2018, 26 (21), 5711-5717. https://doi.org/10.1016/j.bmc.2018.10.020.
    |
  7. George, A.; Gopi Krishna Reddy, A.; Satyanarayana, G.; Raghavendra, N. K. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction. Chem. Biol. Drug. Des. 2018, 91 (6), 1133-1140. https://doi.org/10.1111/cbdd.13175.
    |
  8. Chander, S.; Ashok, P.; Singh, A.; Murugesan, S. De-novo design, synthesis and evaluation of novel 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives as HIV-1 reverse transcriptase inhibitors. Chem. Cent. J. 2015, 9, 33. https://doi.org/10.1186/s13065-015-0111-6.
  9. Gitto, R.; Francica, E.; De Sarro, G.; Scicchitano, F.; Chimirri, A. Solution-phase parallel synthesis of novel 1,2,3,4-tetrahydroisoquinoline-1-ones as anticonvulsant agents. Chem. Pharm. Bull. (Tokyo) 2008, 56 (2), 181-184. https://doi.org/10.1248/cpb.56.181.
    |
  10. Singh, K.; Pal, R.; Khan, S. A.; Kumar, B.; Akhtar, M. J. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. Journal of Molecular Structure 2021, 1237, 130369. https://doi.org/10.1016/j.molstruc.2021.130369.
  11. Kang, S. H.; Bak, D. H.; Yeoup Chung, B.; Bai, H. W. Transformation of nomifensine using ionizing radiation and exploration of its anticancer effects in MCF-7 cells. Exp. Ther. Med. 2022, 23 (4), 306. https://doi.org/10.3892/etm.2022.11235.
  12. Luethi, D.; Hoener, M. C.; Liechti, M. E. Effects of the new psychoactive substances diclofensine, diphenidine, and methoxphenidine on monoaminergic systems. Eur. J. Pharmacol. 2018, 819, 242-247. https://doi.org/10.1016/j.ejphar.2017.12.012.
    |
  13. Inutsuka, A.; Yamanaka, A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front. Endocrinol. (Lausanne) 2013, 4, 18. https://doi.org/10.3389/fendo.2013.00018.
    |
  14. Tsujino, N.; Sakurai, T. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 2013, 7, 28. https://doi.org/10.3389/fnbeh.2013.00028.
    |
  15. Steiner, M. A.; Gatfield, J.; Brisbare-Roch, C.; Dietrich, H.; Treiber, A.; Jenck, F.; Boss, C. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist. ChemMedChem 2013, 8 (6), 898-903. https://doi.org/10.1002/cmdc.201300003.
    |
  16. Perrey, D. A.; German, N. A.; Gilmour, B. P.; Li, J. X.; Harris, D. L.; Thomas, B. F.; Zhang, Y. Substituted tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor. J. Med. Chem. 2013, 56 (17), 6901-6916. https://doi.org/10.1021/jm400720h.
    |
  17. Perrey, D. A.; German, N. A.; Decker, A. M.; Thorn, D.; Li, J. X.; Gilmour, B. P.; Thomas, B. F.; Harris, D. L.; Runyon, S. P.; Zhang, Y. Effect of 1-substitution on tetrahydroisoquinolines as selective antagonists for the orexin-1 receptor. ACS Chem. Neurosci. 2015, 6 (4), 599-614. https://doi.org/10.1021/cn500330v.
    |
  18. Watanabe, H.; Fukui, K.; Shimizu, Y.; Idoko, Y.; Nakamoto, Y.; Togashi, K.; Saji, H.; Ono, M. Synthesis and biological evaluation of F-18 labeled tetrahydroisoquinoline derivatives targeting orexin 1 receptor. Bioorg. Med. Chem. Lett. 2019, 29 (13), 1620-1623. https://doi.org/10.1016/j.bmcl.2019.04.044.
    |
  19. Perrey, D. A.; Decker, A. M.; Li, J. X.; Gilmour, B. P.; Thomas, B. F.; Harris, D. L.; Runyon, S. P.; Zhang, Y. The importance of the 6- and 7-positions of tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor. Bioorg. Med. Chem. 2015, 23 (17), 5709-5724. https://doi.org/10.1016/j.bmc.2015.07.013.
    |
  20. Perrey, D. A.; Decker, A. M.; Zhang, Y. Synthesis and Evaluation of Orexin-1 Receptor Antagonists with Improved Solubility and CNS Permeability. ACS Chem. Neurosci. 2018, 9 (3), 587-602. https://doi.org/10.1021/acschemneuro.7b00402.
    |
  21. Boswell-Smith, V.; Spina, D. PDE4 inhibitors as potential therapeutic agents in the treatment of COPD-focus on roflumilast. Int. J. Chron. Obstruct. Pulmon. Dis. 2007, 2 (2), 121-129.
  22. Essayan, D. M. Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol. 2001, 108 (5), 671-680. https://doi.org/10.1067/mai.2001.119555.
    |
  23. Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. https://doi.org/10.3389/fphar.2018.01048.
  24. Liao, Y.; Guo, Y.; Li, S.; Wang, L.; Tang, Y.; Li, T.; Chen, W.; Zhong, G.; Song, G. Structure-based design and structure-activity relationships of 1,2,3,4-tetrahydroisoquinoline derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem. Lett. 2018, 28 (7), 1188-1193. https://doi.org/10.1016/j.bmcl.2018.02.056.
    |
  25. Song, G.; Zhao, D.; Hu, D.; Li, Y.; Jin, H.; Cui, Z. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem. Lett. 2015, 25 (20), 4610-4614. https://doi.org/10.1016/j.bmcl.2015.08.043.
    |
  26. Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem. 2010, 53 (17), 6355-6360. https://doi.org/10.1021/jm100332n.
    |
  27. Nauck, M. A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des. Devel. Ther. 2014, 8, 1335-1380. https://doi.org/10.2147/DDDT.S50773.
    |
  28. Pan, X.; Huan, Y.; Shen, Z.; Liu, Z. Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes. Eur. J. Med. Chem. 2016, 114, 89-100. https://doi.org/10.1016/j.ejmech.2016.02.053.
    |
  29. Amin, M. L. P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights 2013, 7, 27-34. https://doi.org/10.4137/DTI.S12519.
  30. Varma, M. V.; Ashokraj, Y.; Dey, C. S.; Panchagnula, R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol. Res. 2003, 48 (4), 347-359. https://doi.org/10.1016/s1043-6618(03)00158-0.
    |
  31. Li, Y. S.; Yang, X.; Zhao, D. S.; Cai, Y.; Huang, Z.; Wu, R.; Wang, S. J.; Liu, G. J.; Wang, J.; Bao, X. Z.; Ye, X. Y.; Wei, B.; Cui, Z. N.; Wang, H. Design, synthesis and bioactivity study on 5-phenylfuran derivatives as potent reversal agents against P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Eur. J. Med. Chem. 2021, 216, 113336. https://doi.org/10.1016/j.ejmech.2021.113336.
    |
  32. Qiu, Q.; Zhou, J.; Shi, W.; Kairuki, M.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of N-(4-(2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)phenyl)-4-oxo-3,4-dihydrophthalazine-1-carboxamide derivatives as novel P-glycoprotein inhibitors reversing multidrug resistance. Bioorg. Chem. 2019, 86, 166-175. https://doi.org/10.1016/j.bioorg.2019.01.039.
    |
  33. Qiu, Q.; Shi, W.; Zhao, S.; Zhu, Y.; Ding, Z.; Zhou, S.; Kairuki, M.; Huang, W.; Qian, H. Discovery to solve multidrug resistance: Design, synthesis, and biological evaluation of novel agents. Arch. Pharm. (Weinheim) 2019, 352 (10), e1900127. https://doi.org/10.1002/ardp.201900127.
    |
  34. Zhang, B.; Zhao, T.; Zhou, J.; Qiu, Q.; Dai, Y.; Pan, M.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of novel triazole-core reversal agents against P-glycoprotein-mediated multidrug resistance. RSC advances 2016, 6 (31), 25819-25828. https://doi.org/10.1039/C6RA02405J.
  35. Gao, Y.; Shi, W.; Cui, J.; Liu, C.; Bi, X.; Li, Z.; Huang, W.; Wang, G.; Qian, H. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg. Med. Chem. 2018, 26 (9), 2420-2427. https://doi.org/10.1016/j.bmc.2018.03.045.
    |
  36. Guglielmo, S.; Lazzarato, L.; Contino, M.; Perrone, M. G.; Chegaev, K.; Carrieri, A.; Fruttero, R.; Colabufo, N. A.; Gasco, A. Structure–Activity Relationship Studies on Tetrahydroisoquinoline Derivatives:[4′-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)biphenyl-4-ol](MC70) Conjugated through Flexible Alkyl Chains with Furazan Moieties Gives Rise to Potent and Selective Ligands of P-glycoprotein. J. Med. Chem. 2016, 59 (14), 6729-6738. https://doi.org/10.1021/acs.jmedchem.6b00252.
    |
  37. Li, Y. S.; Zhao, D. S.; Liu, X. Y.; Liao, Y. X.; Jin, H. W.; Song, G. P.; Cui, Z. N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives as P-glycoprotein inhibitors for Doxorubicin resistance in MCF-7/ADR cell. Eur. J. Med. Chem. 2018, 151, 546-556. https://doi.org/10.1016/j.ejmech.2018.04.012.
    |
  38. Mairinger, S.; Wanek, T.; Kuntner, C.; Doenmez, Y.; Strommer, S.; Stanek, J.; Capparelli, E.; Chiba, P.; Müller, M.; Colabufo, N. A.; Langer, O. Synthesis and preclinical evaluation of the radiolabeled P-glycoprotein inhibitor [(11)C]MC113. Nucl. Med. Biol. 2012, 39 (8), 1219-25. https://doi.org/10.1016/j.nucmedbio.2012.08.005.
    |
  39. Colabufo, N. A.; Berardi, F.; Cantore, M.; Perrone, M. G.; Contino, M.; Inglese, C.; Niso, M.; Perrone, R.; Azzariti, A.; Simone, G. M.; Paradiso, A. 4-Biphenyl and 2-naphthyl substituted 6,7-dimethoxytetrahydroisoquinoline derivatives as potent P-gp modulators. Bioorg. Med. Chem. 2008, 16 (7), 3732-43. https://doi.org/10.1016/j.bmc.2008.01.055.
    |
  40. Wu, Y.; Pan, M.; Dai, Y.; Liu, B.; Cui, J.; Shi, W.; Qiu, Q.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg. Med. Chem. 2016, 24 (10), 2287-97. https://doi.org/10.1016/j.bmc.2016.03.065.
    |
  41. Payne, M.; Bottomley, A. L.; Och, A.; Hiscocks, H. G.; Asmara, A. P.; Harry, E. J.; Ung, A. T. Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds. Bioorg. Med. Chem. 2022, 57, 116648. https://doi.org/10.1016/j.bmc.2022.116648.
    |
  42. Ramanivas, T.; Sushma, B.; Nayak, V. L.; Chandra Shekar, K.; Srivastava, A. K. Design, synthesis and biological evaluations of chirally pure 1,2,3,4-tertrahydroisoquinoline analogs as anti-cancer agents. Eur. J. Med. Chem. 2015, 92, 608-618. https://doi.org/10.1016/j.ejmech.2015.01.030.
    |
  43. Capilla, A. S.; Soucek, R.; Grau, L.; Romero, M.; Rubio-Martínez, J.; Caignard, D. H.; Pujol, M. D. Substituted tetrahydroisoquinolines: synthesis, characterization, antitumor activity and other biological properties. Eur. J. Med. Chem. 2018, 145, 51-63. https://doi.org/10.1016/j.ejmech.2017.12.098.
    |
  44. Sim, S.; Lee, S.; Ko, S.; Phuong Bui, B.; Linh Nguyen, P.; Cho, J.; Lee, K.; Kang, J. S.; Jung, J. K.; Lee, H. Design, synthesis, and biological evaluation of potent 1,2,3,4-tetrahydroisoquinoline derivatives as anticancer agents targeting NF-κB signaling pathway. Bioorg. Med. Chem. 2021, 46, 116371. https://doi.org/10.1016/j.bmc.2021.116371.
    |
  45. Wilson, R. J.; Jecs, E.; Miller, E. J.; Nguyen, H. H.; Tahirovic, Y. A.; Truax, V. M.; Kim, M. B.; Kuo, K. M.; Wang, T.; Sum, C. S.; Cvijic, M. E.; Paiva, A. A.; Schroeder, G. M.; Wilson, L. J.; Liotta, D. C. Synthesis and SAR of 1,2,3,4-Tetrahydroisoquinoline-Based CXCR4 Antagonists. ACS Med. Chem. Lett. 2018, 9 (1), 17-22. https://doi.org/10.1021/acsmedchemlett.7b00381.
    |

Downloads

Published

2023-06-03

How to Cite

(1)
Jordaan, M. A.; Ebenezer, O. Biological Activities of Tetrahydroisoquinolines Derivatives. J. Org. Pharm. Chem. 2023, 21, 20-38.

Issue

Section

Review Articles