Multi-faceted Commercially Sourced Pd-Supported Reduction: A View from Practical Experience

Authors

DOI:

https://doi.org/10.24959/ophcj.22.268505

Keywords:

catalysis, hydrogenation, heterocyclic compounds, palladium, selectivity, competing reactions

Abstract

Aim. To share our experience when working with the Pd-catalyzed hydrogenation and discuss reactions occurred contrary to our expectations, as well as express our vision of the causes for such an unusual reactivity.
Results and discussion. Catalysis is a key technology and among the central themes of both petrochemical and fine chemical industries. Although extremely useful and reliable, it can sometimes astonish researchers. The paper discusses 17 intriguing cases of the catalytic hydrogenation and hydrogenolysis reactions from our practice in the High-pressure Synthesis Laboratory (Enamine Ltd.). All examples presented are characterized by peculiar performance of commercially sourced heterogeneous palladium-containing catalysts (Pd/C or Pd(OH)2). Thus, some cases were characterized by reduced activity of the catalyst (or even its complete loss), meaning that reaction conditions found before to be suitable for reduction appeared to be “broken”, and we had to search for a new, often harsher reaction setup. Curiously, it is a matter of classical Pd-catalyzed hydrogenations of N+–O and C=C fragments. Apparently, these results indicate the heterogeneity of commercially available catalysts and are related to their fine internal structure, in particular the surface morphology. Another interesting issue the article deals with is chemoselectivity of the catalytic hydrogenation. Sometimes some reactions led to astonishing results going across theoretical views and expectations. Saturation of benzene rings instead of (or accompanying) debenzylation, breaking of the common order of hydrogenation for compounds containing several aromatic parts with different resonance energies, irreproducible experiment, obtaining of different products under the same conditions, uncommon results of Pd-catalyzed reactions is the list of interesting results, which we observed and discussed in the article. Analyzing the information available in the literature and considering all the results gathered we tend to believe that the presence of impurities of noble metals (Rh, Ru, Pt) in the catalysts used to be a possible reason for these strange findings. The study supports the general idea that commercial palladium catalysts differ in efficiency, resulting in significant differences in selectivity, reaction time, and yields. Elucidating the regularities behind such empirical results is undoubtedly an interesting area of research in the field of catalysis.
Experimental part. All starting compounds exposed to hydrogenation were synthesized in Enamine Ltd. and had purity of not less than 95 %. The palladium-containing catalysts used in the experiment were purchased from 6 commercial sources within 2011 – 2022. The structure and purity of the compounds synthesized were characterized by 1H NMR spectroscopy, liquid chromatography coupled with the mass spectrometry method, elemental analysis. Chromatographic experiments revealed the purity of all compounds obtained being not less than 95 %.
Conclusions. In the paper we have summarized our experience with the Pd-catalyzed hydrogenation and presented cases of unusual reactivity or unexpected outcomes of the reactions encountered in our practice. In general, complications we faced were of three types: (1) irreproducibility of the procedures most likely as the result of a changeable activity of the catalysts; (2) chemoselectivity issues when two or multireducible functional groups were present in the substrate; (3) undesirable Pd-catalyzed defunctionalization reactions. In turn, these complications led to increase in production costs, loss of time and resources. Therefore, because of this variability in the efficiency of Pd catalysts, far more efforts are required to find out the key differences between commercial sources of Pd catalysts, as well as to create protocols clearly defining the catalytic activity of each batch of the catalyst allowing to identify high-quality catalysts immediately prior to the use without wasting precious time and synthetic materials.

Supporting Agency

  • The work was conducted under grant support of the Ministry of Education and Science of Ukraine (project 0120U102179)

Downloads

Download data is not yet available.

References

  1. Petrov, L. Problems and Challenges About Accelerated Testing of the Catalytic Activity of Catalysts. In Principles and Methods for Accelerated Catalyst Design and Testing; Derouane, E. G., Parmon, V., Lemos, F., Ribeiro, F. R., Eds. Springer Netherlands: Dordrecht, 2002; pp 13-69. https://doi.org/10.1007/978-94-010-0554-8_2.
  2. Röper, M. Homogene Katalyse in der Chemischen Industrie. Selektivität, Aktivität und Standzeit. Chem. unserer Zeit 2006, 40 (2), 126-135. https://doi.org/10.1002/ciuz.200600373.
  3. Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120 (2), 683-733. https://doi.org/10.1021/acs.chemrev.9b00230.
    |
  4. Meemken, F.; Baiker, A. Recent Progress in Heterogeneous Asymmetric Hydrogenation of C═O and C═C Bonds on Supported Noble Metal Catalysts. Chem. Rev. 2017, 117 (17), 11522-11569. https://doi.org/10.1021/acs.chemrev.7b00272.
    |
  5. Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115 (13), 6621-6686. https://doi.org/10.1021/acs.chemrev.5b00203.
    |
  6. Cai, R.; Ellis, P. R.; Yin, J.; Liu, J.; Brown, C. M.; Griffin, R.; Chang, G.; Yang, D.; Ren, J.; Cooke, K.; Bishop, P. T.; Theis, W.; Palmer, R. E. Performance of Preformed Au/Cu Nanoclusters Deposited on MgO Powders in the Catalytic Reduction of 4-Nitrophenol in Solution. Small 2018, 14 (13), 1703734. https://doi.org/10.1002/smll.201703734.
    |
  7. Zhang, S.; Xia, Z.; Ni, T.; Zhang, Z.; Ma, Y.; Qu, Y. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. J. Catal. 2018, 359, 101-111. https://doi.org/10.1016/j.jcat.2018.01.004.
  8. Deraedt, C.; Ye, R.; Ralston, W. T.; Toste, F. D.; Somorjai, G. A. Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles. J. Am. Chem. Soc. 2017, 139 (49), 18084-18092. https://doi.org/10.1021/jacs.7b10768.
    |
  9. Prechtl, M. H. G.; Scariot, M.; Scholten, J. D.; Machado, G.; Teixeira, S. R.; Dupont, J. Nanoscale Ru(0) Particles: Arene Hydrogenation Catalysts in Imidazolium Ionic Liquids. Inorg. Chem. 2008, 47 (19), 8995-9001. https://doi.org/10.1021/ic801014f.
  10. Tamura, M.; Yonezawa, D.; Oshino, T.; Nakagawa, Y.; Tomishige, K. In Situ Formed Fe Cation Modified Ir/MgO Catalyst for Selective Hydrogenation of Unsaturated Carbonyl Compounds. ACS Catalysis 2017, 7 (8), 5103-5111. https://doi.org/10.1021/acscatal.7b01055.
  11. Ayass, W. W.; Miñambres, J. F.; Yang, P.; Ma, T.; Lin, Z.; Meyer, R.; Jaensch, H.; Bons, A.-J.; Kortz, U. Discrete Polyoxopalladates as Molecular Precursors for Supported Palladium Metal Nanoparticles as Hydrogenation Catalysts. Inorg. Chem. 2019, 58 (9), 5576-5582. https://doi.org/10.1021/acs.inorgchem.8b03513.
    |
  12. Stoffels, M. A.; Klauck, F. J. R.; Hamadi, T.; Glorius, F.; Leker, J. Technology Trends of Catalysts in Hydrogenation Reactions: A Patent Landscape Analysis. Adv. Synth. Catal. 2020, 362 (6), 1258-1274. https://doi.org/10.1002/adsc.201901292.
  13. Nerozzi, F. Heterogeneous Catalytic Hydrogenation. Platinum Met. Rev. 2012, 56 (4), 236-241. https://doi.org/10.1595/147106712X654187.
  14. King, A. O.; Larsen, R. D.; Negishi, E.-i. Palladium-Catalyzed Heterogeneous Hydrogenation. In Handbook of Organopalladium Chemistry for Organic Synthesis, 2002; pp 2719-2752. https://doi.org/10.1002/0471212466.ch124.
  15. Baimuratova, R. K.; Andreeva, A. V.; Uflyand, I. E.; Shilov, G. V.; Bukharbayeva, F. U.; Zharmagambetova, A. K.; Dzhardimalieva, G. I. Synthesis and Catalytic Activity in the Hydrogenation Reaction of Palladium-Doped Metal-Organic Frameworks Based on Oxo-Centered Zirconium Complexes. Journal of Composites Science 2022, 6 (10), 299. https://doi.org/10.3390/jcs6100299.
  16. Rao, R. G.; Blume, R.; Hansen, T. W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D. D.; Chabal, Y. J.; Schlögl, R.; Tessonnier, J.-P. Interfacial charge distributions in carbon-supported palladium catalysts. Nature Communications 2017, 8 (1), 340. https://doi.org/10.1038/s41467-017-00421-x.
    |
  17. Iost, K. N.; Borisov, V. A.; Temerev, V. L.; Surovikin, Y. V.; Pavluchenko, P. E.; Trenikhin, M. V.; Arbuzov, A. B.; Shlyapin, D. A.; Tsyrulnikov, P. G.; Vedyagin, A. A. Carbon support hydrogenation in Pd/C catalysts during reductive thermal treatment. Int. J. Hydrogen Energy 2018, 43 (37), 17656-17663. https://doi.org/10.1016/j.ijhydene.2018.07.182.
  18. Campanati, M.; Fornasari, G.; Vaccari, A. Fundamentals in the preparation of heterogeneous catalysts. Catal. Today 2003, 77 (4), 299-314. https://doi.org/10.1016/S0920-5861(02)00375-9.
  19. Albers, P. W.; Möbus, K.; Wieland, S. D.; Parker, S. F. The fine structure of Pearlman's catalyst. Phys. Chem. Chem. Phys. 2015, 17 (7), 5274-5278. https://doi.org/10.1039/C4CP05681G.
  20. Crawford, C. J.; Qiao, Y.; Liu, Y.; Huang, D.; Yan, W.; Seeberger, P. H.; Oscarson, S.; Chen, S. Defining the Qualities of High-Quality Palladium on Carbon Catalysts for Hydrogenolysis. Org. Process Res. Dev. 2021, 25 (7), 1573-1578. https://doi.org/10.1021/acs.oprd.0c00536.
  21. Ivanytsia, M. O.; Lytvynenko, A. S.; Tverdyi, D. O.; Burianov, V. V.; Sotnik, S. O.; Kolotilov, S. V.; Riabukhin, S. V.; Volochniuk, D. M. Sposib otsinky aktyvnosti katalizatoriv reaktsii hidruvannia orhanichnykh spoluk [A method of evaluating the activity of catalysts for reactions of hydrogenation of organic compounds, in Ukrainian]. UA Patent 124641, Oct 20, 2021.
  22. Mousavi, S.; Nazari, B.; Keshavarz, M. H.; Bordbar, A.-K. A Simple Method for Safe Determination of the Activity of Palladium on Activated Carbon Catalysts in the Hydrogenation of Cinnamic Acid to Hydrocinnamic Acid. Ind. Eng. Chem. Res. 2020, 59 (5), 1862-1874. https://doi.org/10.1021/acs.iecr.9b06087.
  23. Stamm, S.; Linden, A.; Heimgartner, H. Chiral Heterospirocyclic 2H-Azirin-3-amines as Synthons for 3-Amino-2,3,4,5-tetrahydrofuran-3-carboxylic Acid and Their Use in Peptide Synthesis. Helv. Chim. Acta 2003, 86 (5), 1371-1396. https://doi.org/10.1002/hlca.200390124.
  24. Soldermann, C. P.; Quancard, J.; Schlapbach, A.; Simic, O.; Tintelnot-Blomley, M.; Zoller, Th. Novel pyrazolo pyrimidine derivatives and their use as malt1 inhibitors. WO2015181747A1, Dec 3, 2015.
  25. Peters, O.; Haaf, K. B.; Lindell, S. D.; Bojack, G.; Law, K. R.; Machettira, A. B.; Dietrich, H.; Gatzweiler, E.; Rosinger, Ch. H. Herbicidally active 3-phenylisoxazoline-5-carboxamides of tetrahydro and dihydrofuran carboxylic acids and esters. US2021292312A1, Sep 23, 2021.
  26. Zhou, W.; Peng, Y.; Li, S.-S. Semi-synthesis and anti-tumor activity of 5,8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem. 2010, 45 (12), 6005-6011. https://doi.org/10.1016/j.ejmech.2010.09.068.
    |
  27. Mao, Z.; Gu, H.; Lin, X. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts 2021, 11, 1078. https://doi.org/10.3390/catal11091078.
  28. Wu, Z.-Q.; Jiang, X.-K.; Li, Z.-T. Hydrogen bonding-mediated self-assembly of square and triangular metallocyclophanes. Tetrahedron Lett. 2005, 46 (46), 8067-8070. https://doi.org/10.1016/j.tetlet.2005.06.173.
  29. Barraclough, P.; Black, J. W.; Cambridge, D.; Collard, D.; Firmin, D.; Gerskowitch, V. P.; Glen, R. C.; Giles, H.; Hill, A. P. Inotropic 'A' ring substituted sulmazole and isomazole analogs. J. Med. Chem. 1990, 33 (8), 2231-2239. 10.1021/jm00170a030.
    |
  30. Plaquevent, J.-C.; Chichaoui, I. Réduction régiospécifique des bipyridines. Tetrahedron Lett. 1993, 34 (33), 5287-5288. https://doi.org/10.1016/S0040-4039(00)73975-X.
  31. Mondal, J.; Trinh, Q. T.; Jana, A.; Ng, W. K. H.; Borah, P.; Hirao, H.; Zhao, Y. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature. ACS Applied Materials & Interfaces 2016, 8 (24), 15307-15319. https://doi.org/10.1021/acsami.6b03127.
  32. Frackenpohl, J.; Zeiss, H.-J.; Heinemann, I.; Willms, L.; Müller, Th.; Busch, M.; Von Koskull-Döering, P.; Rosinger, Ch. H.; Dittgen, J.; Hills, M. J. Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants. US2014302987A1, Oct 9, 2014.
  33. Yu, Y.; Guo, J.; Cai, Z.; Ju, Y.; Xu, J.; Gu, Q.; Zhou, H. Identification of new building blocks by fragment screening for discovering GyrB inhibitors. Bioorg. Chem. 2021, 114, 105040. https://doi.org/10.1016/j.bioorg.2021.105040.
    |
  34. Baumann, K.; Knapp, H.; Strnadt, G.; Schulz, G.; Grassberger, M. A. Carbonyl to methylene conversions at the tricarbonyl-portion of ascomycin derivatives. Tetrahedron Lett. 1999, 40 (44), 7761-7764. https://doi.org/10.1016/S0040-4039(99)01622-6.
  35. Clive, D. L. J.; Wang, J. A Tin Hydride Designed To Facilitate Removal of Tin Species from Products of Stannane-Mediated Radical Reactions. J. Org. Chem. 2002, 67 (4), 1192-1198. https://doi.org/10.1021/jo010885c.
    |
  36. Vannice, M. A.; Poondi, D. The Effect of Metal-Support Interactions on the Hydrogenation of Benzaldehyde and Benzyl Alcohol. J. Catal. 1997, 169 (1), 166-175. https://doi.org/10.1006/jcat.1997.1696.
  37. Wang, W.; Yang, Y.; Luo, H.; Hu, T.; Liu, W. Amorphous Co–Mo–B catalyst with high activity for the hydrodeoxygenation of bio-oil. Catal. Commun. 2011, 12 (6), 436-440. https://doi.org/10.1016/j.catcom.2010.11.001.
  38. Zaccheria, F.; Ravasio, N.; Ercoli, M.; Allegrini, P. Heterogeneous Cu-catalysts for the reductive deoxygenation of aromatic ketones without additives. Tetrahedron Lett. 2005, 46 (45), 7743-7745. https://doi.org/10.1016/j.tetlet.2005.09.041.
  39. Argouarch, G. Mild and efficient rhodium-catalyzed deoxygenation of ketones to alkanes. New J. Chem. 2019, 43 (28), 11041-11044. https://doi.org/10.1039/C9NJ02954K.
  40. Volkov, A.; Gustafson, K. P. J.; Tai, C.-W.; Verho, O.; Bäckvall, J.-E.; Adolfsson, H. Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent. Angew. Chem. Int. Ed. 2015, 54 (17), 5122-5126. https://doi.org/10.1002/anie.201411059.
    |
  41. Bejblová, M.; Zámostný, P.; Červený, L.; Čejka, J. Hydrodeoxygenation of benzophenone on Pd catalysts. Applied Catalysis A: General 2005, 296 (2), 169-175. https://doi.org/10.1016/j.apcata.2005.07.061.
  42. Gong, S. W.; He, H. F.; Zhao, C. Q.; Liu, L. J.; Cui, Q. X. Convenient Deoxygenation of Aromatic Ketones by Silica-Supported Chitosan Schiff Base Palladium Catalyst. Synth. Commun. 2012, 42 (4), 574-581. https://doi.org/10.1080/00397911.2010.527423.
  43. Newman, M. S.; Cline, W. K. A new synthesis of 2,9-dimethylpicene. J. Org. Chem. 1951, 16 (6), 934-940. https://doi.org/10.1021/jo01146a017.
  44. Uysal, T.; Cosford, N. D. P. Compounds and methods for treatment of disorders associated with er stress. WO2007111994A2, Oct 4, 2007.
  45. Egli, R.; Eugster, C. H. Über die selektive katalytische Reduktion von substituierten Anilinen zu substituierten Cyclohexylaminen und von Benzol- bzw. Phenyl-alkan-sulfonsäuren zu Cyclohexan- bzw. Cyclohexylalkan-sulfonsäuren. Helv. Chim. Acta 1975, 58 (8), 2321-2346. https://doi.org/10.1002/hlca.19750580814.
  46. Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis; John Wiley & Sons, 2006. https://doi.org/10.1002/0470053488.
  47. Guazzelli, L.; Crawford, C. J.; Ulc, R.; Bowen, A.; McCabe, O.; Jedlicka, A. J.; Wear, M. P.; Casadevall, A.; Oscarson, S. A synthetic glycan array containing Cryptococcus neoformans glucuronoxylomannan capsular polysaccharide fragments allows the mapping of protective epitopes. Chemical Science 2020, 11 (34), 9209-9217. https://doi.org/10.1039/D0SC01249A.
  48. Boutet, J.; Blasco, P.; Guerreiro, C.; Thouron, F.; Dartevelle , S.; Nato , F.; Cañada, F. J.; Ardá, A.; Phalipon, A.; Jiménez-Barbero, J.; Mulard, L. A. Detailed Investigation of the Immunodominant Role of O-Antigen Stoichiometric O-Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STD-NMR Spectroscopy for Shigella flexneri 3a. Chem. Eur. J. 2016, 22 (31), 10892-10911. https://doi.org/10.1002/chem.201600567.
    |
  49. Zhou, H.; Liao, X.; Cook, J. M. Regiospecific, Enantiospecific Total Synthesis of the 12-Alkoxy-Substituted Indole Alkaloids, (+)-12-Methoxy-Na-methylvellosimine, (+)-12-Methoxyaffinisine, and (−)-Fuchsiaefoline. Org. Lett. 2004, 6 (2), 249-252. https://doi.org/10.1021/ol0362212.
  50. Nicolaou, K. C.; Claiborne, C. F.; Nantermet, P. G.; Couladouros, E. A.; Sorensen, E. J. Synthesis of Novel Taxoids. J. Am. Chem. Soc. 1994, 116 (4), 1591-1592. https://doi.org/10.1021/ja00083a063.
  51. Kozioł, A.; Lendzion-Paluch, A.; Manikowski, A. A Fast and Effective Hydrogenation Process of Protected Pentasaccharide: A Key Step in the Synthesis of Fondaparinux Sodium. Org. Process Res. Dev. 2013, 17 (5), 869-875. https://doi.org/10.1021/op300367c.
  52. NG, P. Y.; Jewett, I.; Lucas, M. C.; Padilla, F.; Enyedy, I. J. 6-substituted-9H-purine derivatives and related uses. WO2022178256A1, Aug 25, 2022.
  53. Tang, L.; Wu, W.; Zhang, C.; Shi, Z.; Chen, D.; Zhai, X.; Jiang, Y. Discovery of the PARP (poly ADP-ribose polymerase) inhibitor 2-(1-(4,4-difluorocyclohexyl)piperidin-4-yl)-1H-benzo[d]imidazole-4-carboxamide for the treatment of cancer. Bioorg. Chem. 2021, 114, 105026. https://doi.org/10.1016/j.bioorg.2021.105026.
    |
  54. Li, Y.; Manickam, G.; Ghoshal, A.; Subramaniam, P. More Efficient Palladium Catalyst for Hydrogenolysis of Benzyl Groups. Synth. Commun. 2006, 36 (7), 925-928. https://doi.org/10.1080/00397910500466199.
  55. Faust, M. R.; Höfner, G.; Pabel, J.; Wanner, K. T. Azetidine derivatives as novel γ-aminobutyric acid uptake inhibitors: Synthesis, biological evaluation, and structure–activity relationship. Eur. J. Med. Chem. 2010, 45 (6), 2453-2466. https://doi.org/10.1016/j.ejmech.2010.02.029.
    |
  56. Védrine, J. C. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem 2019, 12 (3), 577-588. https://doi.org/10.1002/cssc.201802248.
    |
  57. Grice, P.; Ley, S. V.; Pietruszka, J.; Osborn, H. M. I.; Priepke, H. W. M.; Warriner, S. L. A New Strategy for Oligosaccharide Assembly Exploiting Cyclohexane-1,2-diacetal Methodology: An Efficient Synthesis of a High Mannose Type Nonasaccharide. Chem. Eur. J. 1997, 3 (3), 431-440. https://doi.org/10.1002/chem.19970030315.
  58. Crawford, C.; Oscarson, S. Optimized Conditions for the Palladium-Catalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups. Eur. J. Org. Chem. 2020, 2020 (22), 3332-3337. https://doi.org/10.1002/ejoc.202000401.
  59. Shao, J.; Zhu, K.; Du, D.; Zhang, Y.; Tao, H.; Chen, Z.; Jiang, H.; Chen, K.; Luo, C.; Duan, W. Discovery of 2-substituted-N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide as potent and selective protein arginine methyltransferases 5 inhibitors: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2019, 164, 317-333. https://doi.org/10.1016/j.ejmech.2018.12.065.
    |
  60. Schudok, M.; Matter, H.; Hofmeister, A. Tetrahydrofurane derivatives for use as inhibitors of matrix metalloproteinases. WO2006077013A1, Jul 27, 2006.
  61. Armour, D. R.; Chung, K. M. L.; Congreve, M.; Evans, B.; Guntrip, S.; Hubbard, T.; Kay, C.; Middlemiss, D.; Mordaunt, J. E.; Pegg, N. A.; Vinader, M. V.; Ward, P.; Watson, S. P. Tetrazole NK1 receptor antagonists: The identification of an exceptionally potent orally active antiemetic compound. Bioorg. Med. Chem. Lett. 1996, 6 (9), 1015-1020. https://doi.org/10.1016/0960-894X(96)00163-1.
  62. Wagener, T.; Heusler, A.; Nairoukh, Z.; Bergander, K.; Daniliuc, C. G.; Glorius, F. Accessing (Multi)Fluorinated Piperidines Using Heterogeneous Hydrogenation. ACS Catalysis 2020, 10 (20), 12052-12057. https://doi.org/10.1021/acscatal.0c03278.
  63. Zhu, J.; Chen, P.-h.; Lu, G.; Liu, P.; Dong, G. Ruthenium-Catalyzed Reductive Cleavage of Unstrained Aryl–Aryl Bonds: Reaction Development and Mechanistic Study. J. Am. Chem. Soc. 2019, 141 (46), 18630-18640. https://doi.org/10.1021/jacs.9b11605.
    |
  64. Kim, S.; Loose, F.; Bezdek, M. J.; Wang, X.; Chirik, P. J. Hydrogenation of N-Heteroarenes Using Rhodium Precatalysts: Reductive Elimination Leads to Formation of Multimetallic Clusters. J. Am. Chem. Soc. 2019, 141 (44), 17900-17908. https://doi.org/10.1021/jacs.9b09540.
    |
  65. Yu, T.; Wang, J.; Li, X.; Cao, X.; Gu, H. An Improved Method for the Complete Hydrogenation of Aromatic Compounds under 1 Bar H2 with Platinum Nanowires. ChemCatChem 2013, 5 (10), 2852-2855. https://doi.org/10.1002/cctc.201300394.
  66. McPhillie, M. J.; Zhou, Y.; Hickman, M. R.; Gordon, J. A.; Weber, C. R.; Li, Q.; Lee, P. J.; Amporndanai, K.; Johnson, R. M.; Darby, H.; Woods, S.; Li, Z.-h.; Priestley, R. S.; Ristroph, K. D.; Biering, S. B.; El Bissati, K.; Hwang, S.; Hakim, F. E.; Dovgin, S. M.; Lykins, J. D.; Roberts, L.; Hargrave, K.; Cong, H.; Sinai, A. P.; Muench, S. P.; Dubey, J. P.; Prud'homme, R. K.; Lorenzi, H. A.; Biagini, G. A.; Moreno, S. N.; Roberts, C. W.; Antonyuk, S. V.; Fishwick, C. W. G.; McLeod, R. Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites. Frontiers in Cellular and Infection Microbiology 2020, 10. https://doi.org/10.3389/fcimb.2020.00203.
    |
  67. Höglund, I. P. J.; Silver, S.; Engström, M. T.; Salo, H.; Tauber, A.; Kyyrönen, H.-K.; Saarenketo, P.; Hoffrén, A.-M.; Kokko, K.; Pohjanoksa, K.; Sallinen, J.; Savola, J.-M.; Wurster, S.; Kallatsa, O. A. Structure−Activity Relationship of Quinoline Derivatives as Potent and Selective α2C-Adrenoceptor Antagonists. J. Med. Chem. 2006, 49 (21), 6351-6363. https://doi.org/10.1021/jm060262x.
  68. Matsubara, S.; Yokota, Y.; Oshima, K. Palladium-Catalyzed Decarboxylation and Decarbonylation under Hydrothermal Conditions:  Decarboxylative Deuteration. Org. Lett. 2004, 6 (12), 2071-2073. https://doi.org/10.1021/ol0492602.
    |
  69. Modak, A.; Maiti, D. Metal catalyzed defunctionalization reactions. Org. Biomol. Chem. 2016, 14 (1), 21-35. https://doi.org/10.1039/C5OB01949D.
  70. Hanessian, S.; Sharma, R. The Synthesis of Bicyclic Piperazine-2-carboxylic Acids from L-Proline. Heterocycles 2000, 52 (3), 1231-1239. https://doi.org/10.3987/COM-99-S136.
  71. Uozumi, Y.; Shen, G. Pd/C-Catalyzed Reductive N-Methylation of Quinolines. Synfacts 2019, 15 (07), 0790. https://doi.org/10.1055/s-0039-1689752.
  72. Goyal, V.; Gahtori, J.; Narani, A.; Gupta, P.; Bordoloi, A.; Natte, K. Commercial Pd/C-Catalyzed N-Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H2 Source. J. Org. Chem. 2019, 84 (23), 15389-15398. https://doi.org/10.1021/acs.joc.9b02141.
    |
  73. Matsushima, T.; Takahashi, K.; Funasaka, S.; Obaishi, H.; Shirotori, S. Pyridine derivatives and pyrimidine derivatives. US8288538B2, Oct 16, 2012.
  74. Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer, A.; Maslen, S. L.; Ley, S. V. Synthesis of Azadirachtin: A Long but Successful Journey. Angew. Chem. Int. Ed. 2007, 46 (40), 7629-7632. https://doi.org/10.1002/anie.200703027.
    |
  75. Huang, J.-L.; Dai, X.-J.; Li, C.-J. Iridium-Catalyzed Direct Dehydroxylation of Alcohols. Eur. J. Org. Chem. 2013, 2013 (29), 6496-6500. https://doi.org/10.1002/ejoc.201301293.
  76. Chan, L. Y.; Lim, J. S. K.; Kim, S. Iron-Catalyzed Reductive Dehydroxylation of Benzylic Alcohols Using Polymethylhydrosiloxane (PMHS). Synlett 2011, 2011 (19), 2862-2866. https://doi.org/10.1055/s-0031-1289857.

Downloads

Published

2023-05-31

How to Cite

(1)
Burianov, V. V.; Lega, D. A.; Makhankova, V. G.; Volovenko, Y. M.; Kolotilov, S. V.; Volochnyuk, D. M.; Ryabukhin, S. V. Multi-Faceted Commercially Sourced Pd-Supported Reduction: A View from Practical Experience. J. Org. Pharm. Chem. 2023, 20, 3-20.

Issue

Section

Advanced Researches