Polymethine Dyes Based on 2,2-Difluoro-1,3,2-dioxaborine: a Minireview

Authors

DOI:

https://doi.org/10.24959/ophcj.22.271882

Keywords:

dioxaborine, polymethine, merocyanine, anionic dye, absorption, fluorescence

Abstract

Aim. To summarize and analyze literature data on the polymethine dyes containing the 2,2-difluoro-1,3,2-dioxaborine ring.
Results and discussion. Boron difluoride complex of β-diketone (2,2-difluoro-1,3,2-dioxaborine, F2DB) is a unique structural motif endowing organic compounds with prominent physicochemical properties, such as a strong fluorescence and high mo-lar attenuation coefficients. Incorporation of the F2DB core into a polymethine chromophore either as an end-group or as an integral part of the polymethine chain allows obtaining dyes with exceptional characteristics, highly appealing for design of up-to-date functional materials. This review focuses on the synthesis and spectral properties of the F2DB-containing polymethines along with the latest advancement in the synthesis of highly fluorescent polyanionic polymethines. A brief discussion of the effects of the structural modification of the π-conjugated system on the photophysical properties of dyes is included.
Conclusions. The literature on the F2DB-containing polymethines demonstrates a high potential of the F2DB core for the development of strongly fluorescent and intensely absorbing dyes.

Supporting Agency

  • The work is a part of the departmental research at Institute of Organic Chemistry of the NASU on the topic “Synthesis, structure, and photonics of the polymethine dyes with atypical chromophore systems” (the State registration No. 0117U003839; the research period – 2018 – 2022).

Downloads

Download data is not yet available.

References

  1. Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Cyanines during the 1990s: A Review. Rev. 2000, 100 (6), 1973–2012. https://doi.org/10.1021/cr990402t.
  2. Kammler, R.; Bourhill, G.; Jin, Y.; Bräuchle, C.; Görlitz, G.; Hartmann, H. Second-Order Optical Non-Linearity of New 1,3,2(2H)-Dioxaborine Dyes. Chem. Soc., Faraday Trans. 1996, 92 (6), 945–947. https://doi.org/10.1039/FT9969200945.
  3. Hales, J. M.; Zheng, S.; Barlow, S.; Marder, S. R.; Perry, J. W. Bisdioxaborine Polymethines with Large Third-Order Nonlinearities for All-Optical Signal Processing. Am. Chem. Soc. 2006, 128 (35), 11362–11363. https://doi.org/10.1021/ja063535m.
  4. Padilha, L. A.; Webster, S.; Przhonska, O. V.; Hu, H.; Peceli, D.; Rosch, J. L.; Bondar, M. V.; Gerasov, A. O.; Kovtun, Y. P.; Shandura, M. P.; Kachkovski, A. D.; Hagan, D. J.; Van Stryland, E. W. Nonlinear Absorption in a Series of Donor–π–Acceptor Cyanines with Different Conjugation Lengths. Mater. Chem. 2009, 19 (40), 7503. https://doi.org/10.1039/b907344b.
  5. Padilha, L. A.; Webster, S.; Przhonska, O. V.; Hu, H.; Peceli, D.; Ensley, T. R.; Bondar, M. V.; Gerasov, A. O.; Kovtun, Y. P.; Shandura, M. P.; Kachkovski, A. D.; Hagan, D. J.; Stryland, E. W. Van. Efficient Two-Photon Absorbing Acceptor-π-Acceptor Polymethine Dyes. Phys. Chem. A 2010, 114 (23), 6493–6501. https://doi.org/10.1021/jp100963e.
  6. Matichak, J. D.; Hales, J. M.; Ohira, S.; Barlow, S.; Jang, S.-H.; Jen, A. K.-Y.; Brédas, J.-L.; Perry, J. W.; Marder, S. R. Using End Groups to Tune the Linear and Nonlinear Optical Properties of Bis(Dioxaborine)-Terminated Polymethine Dyes. ChemPhysChem 2010, 11 (1), 130–138. https://doi.org/10.1002/cphc.200900635.
  7. Lin, H.-C.; Kim, H.; Barlow, S.; Hales, J. M.; Perry, J. W.; Marder, S. R. Synthesis and Linear and Nonlinear Optical Properties of Metal-Terminated Bis(Dioxaborine) Polymethines. Commun. 2011, 47 (2), 782–784. https://doi.org/10.1039/C0CC02003F.
  8. Pitter, D. R. G.; Brown, A. S.; Baker, J. D.; Wilson, J. N. One Probe, Two-Channel Imaging of Nuclear and Cytosolic Compartments with Orange and Red Emissive Dyes. Biomol. Chem. 2015, 13 (36), 9477–9484. https://doi.org/10.1039/C5OB01428J.
    |
  9. Collot, M.; Fam, T. K.; Ashokkumar, P.; Faklaris, O.; Galli, T.; Danglot, L.; Klymchenko, A. S. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. Am. Chem. Soc. 2018, 140 (16), 5401–5411. https://doi.org/10.1021/jacs.7b12817.
    |
  10. Ashoka, A. H.; Ashokkumar, P.; Kovtun, Y. P.; Klymchenko, A. S. Solvatochromic Near-Infrared Probe for Polarity Mapping of Biomembranes and Lipid Droplets in Cells under Stress. Phys. Chem. Lett. 2019, 10 (10), 2414–2421. https://doi.org/10.1021/acs.jpclett.9b00668.
    |
  11. Gerasov, А.; Shandura, M.; Kovtun, Y.; Losytskyy, M.; Negrutska, V.; Dubey, I. Fluorescent Labeling of Proteins with Amine-Specific 1,3,2-(2H)-Dioxaborine Polymethine Dye. Biochem. 2012, 420 (2), 115–120. https://doi.org/10.1016/j.ab.2011.09.018.
    |
  12. Sun, Q.; Wang, W.; Chen, Z.; Yao, Y.; Zhang, W.; Duan, L.; Qian, J. A Fluorescence Turn-on Probe for Human (Bovine) Serum Albumin Based on the Hydrolysis of a Dioxaborine Group Promoted by Proteins. Commun. 2017, 53 (48), 6432–6435. https://doi.org/10.1039/C7CC03587J.
    |
  13. Li, Z.; Wang, Y.; Li, M.; Chen, H.; Xie, Y.; Li, P.; Guo, H.; Ya, H. Solvent-Dependent and Visible Light-Activated NIR Photochromic Dithienylethene Modified by Difluoroboron β-Diketonates as Fluorescent Turn-on PH Sensor. Dyes Pigm. 2019, 162, 339–347. https://doi.org/10.1016/j.dyepig.2018.10.049.
  14. Karpenko, I. A.; Niko, Y.; Yakubovskyi, V. P.; Gerasov, A. O.; Bonnet, D.; Kovtun, Y. P.; Klymchenko, A. S. Push–Pull Dioxaborine as Fluorescent Molecular Rotor: Far-Red Fluorogenic Probe for Ligand–Receptor Interactions. Mater. Chem. C 2016, 4 (14), 3002–3009. https://doi.org/10.1039/C5TC03411F.
  15. Han, W.; You, J.; Li, H.; Zhao, D.; Nie, J.; Wang, T. Curcuminoid‐Based Difluoroboron Dyes as High‐Performance Photosensitizers in Long‐Wavelength (Yellow and Red) Cationic Photopolymerization. Rapid Commun. 2019, 40 (20), 1900291. https://doi.org/10.1002/marc.201900291.
    |
  16. Zhou, Y.; Chen, Y.-Z.; Cao, J.-H.; Yang, Q.-Z.; Wu, L.-Z.; Tung, C.-H.; Wu, D.-Y. Dicyanoboron Diketonate Dyes: Synthesis, Photophysical Properties and Bioimaging. Dyes Pigm. 2015, 112, 162–169. https://doi.org/10.1016/j.dyepig.2014.07.001.
  17. Cheng, X.; Li, D.; Zhang, Z.; Zhang, H.; Wang, Y. Organoboron Compounds with Morphology-Dependent NIR Emissions and Dual-Channel Fluorescent ON/OFF Switching. Lett. 2014, 16 (3), 880–883. https://doi.org/10.1021/ol403639n.
  18. Chen, P.-Z.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Difluoroboron β-Diketonate Dyes: Spectroscopic Properties and Applications. Chem. Rev. 2017, 350, 196–216. https://doi.org/10.1016/j.ccr.2017.06.026.
  19. Collot, M. Recent Advances in Dioxaborine-Bxased Fluorescent Materials for Bioimaging Applications. Mater. Horiz. 2021, 8 (2), 501–514. https://doi.org/10.1039/D0MH01186J.
    |
  20. Delgado, D.; Abonia, R. Synthetic Approaches for BF2-Containing Adducts of Outstanding Biological Potential. A Review. Arabian J. Chem. 2022, 15 (1), 103528. https://doi.org/10.1016/j.arabjc.2021.103528.
  21. Vanallan, J. A.; Reynolds, G. A. The Reactions of 2,2-Difluoro-4-Methylnaphtho[l,2-e]-1,3,2-Dioxaborin and Its [2,1-e] Isomer with Carbonyl Compounds and with Aniline. Heterocycl. Chem. 1969, 6 (1), 29–35. https://doi.org/10.1002/jhet.5570060106.
  22. Dilthey, W.; Eduardoff, F.; Schumacher, F. J. Ueber Siliconium‐, Boronium‐ Und Titanoniumsalze. Zum Theil Gemeinschaftlich Mit. Justus Liebigs Ann. Chem. 1906, 344 (3), 300–313. https://doi.org/10.1002/jlac.19063440305.
  23. Morgan, G. T.; Tunstall, R. B. CCLIII.—Researches on Residual Affinity and Coordination. Part XXI. Boron β-Diketone Difluorides. Chem. Soc., Trans. 1924, 125, 1963–1967. https://doi.org/10.1039/CT9242501963.
  24. Shokova, E. A.; Kim, J. K.; Kovalev, V. V. evich. 1,3-Diketones. Synthesis and Properties. J. Org. Chem. 2015, 51 (6), 755–830. https://doi.org/10.1134/S1070428015060019.
  25. Kel’in, A. Recent Advances in the Synthesis of 1,3-Diketones. Org. Chem. 2003, 7 (16), 1691–1711. https://doi.org/10.2174/1385272033486233.
  26. Young, F. G.; Frostick, F. C.; Sanderson, J. J.; Hauser, C. R. Conversion of Ketone Enol Esters to β-Diketones by Intramolecular Thermal Rearrangement and by Intermolecular Acylations Using Boron Fluoride. Am. Chem. Soc. 1950, 72 (8), 3635–3642. https://doi.org/10.1021/ja01164a088.
  27. Meerwein, H.; Vossen, D. Synthesen von Ketonen Und β-Diketonen Mit Hilfe von Borfluorid. Journal für Praktische Chemie 1934, 141 (5–8), 149–166. https://doi.org/10.1002/PRAC.19341410503.
  28. Hauser, C. R.; Frostick, F. C.; Man, E. H. Mechanism of Acetylation of Ketone Enol Acetates with Acetic Anhydride by Boron Trifluoride to Form β-Diketones. Am. Chem. Soc. 1952, 74 (13), 3231–3233. https://doi.org/10.1021/ja01133a008.
  29. Youssefyeh, R. D. Acylations of Ketals and Enol Ethers. Am. Chem. Soc. 1963, 85 (23), 3901–3902. https://doi.org/10.1021/ja00906a047.
  30. Durden, J. A.; Crosby, D. G. The Boron Trifluoride Catalyzed Reaction of Acetophenone with Acetic Anhydride. Org. Chem. 1965, 30 (5), 1684–1687. https://doi.org/10.1021/jo01016a527.
  31. Schiemenz, G. P.; Schmidt, U. Trimethoxyphenylverbindungen, IX. Borheterocyclen in Der Präparativen Naturstoffchemie: Eine Einfache Synthese Des Aurentiacins. Liebigs Annalen der Chemie 1982, 1982 (8), 1509–1513. https://doi.org/10.1002/JLAC.198219820810.
  32. Czerney, P.; Igney, C.; Haucke, G.; Hartmann, H. Zur Synthese Und Spektralen Charakterisierung von Verbrückten 2, 2-Difluoro-1,3,2-Dioxaborinen. Zeitschrift für Chemie 1988, 28 (1), 23–24. https://doi.org/10.1002/ZFCH.19880280105.
  33. Görlitz, G.; Hartmann, H. On the Formation and Solvolysis of 4-Aryl-2,2-Difluoro-6-Methyl-1,3,2-(2H)-Dioxaborines. Chem. 1997, 8 (2), 147–155. https://doi.org/10.1002/(SICI)1098-1071(1997)8:2<147::AID-HC7>3.0.CO;2-B.
  34. Görlitz, G.; Hartmann, H.; Nuber, B.; Wolff, J. J. A Simple Route to 4-Aryl and 4-Hetaryl Substituted 6-Methyl-2,2-Difluoro-1,3,2-(2H)-Dioxaborines. Journal für praktische Chemie 1999, 341 (2), 167–172. https://doi.org/10.1002/(SICI)1521-3897(199902)341:2<167::AID-PRAC167>3.0.CO;2-A.
  35. Hauser, C. R.; Eby, C. J. The Conversion of β-Ketonitriles to β-Ketoamides by Boron Fluoride in Aqueous Acetic Acid and by Polyphosphoric Acid 1. Am. Chem. Soc. 1957, 79 (3), 725–727. https://doi.org/10.1021/ja01560a061.
  36. Hartmann H.; Hunze A.; Kanitz A.; Rogler W.; Rohde D. Amorphous organic 1,3,2-dioxaborine luminоphores method for the production and use thereof. U. S. Patent US20040065867А1, April 8, 2004.
  37. Kamisky, D. Process for the preparation of substituted pyrano(3,2-c)(1,2)benzo-thiazine 6,6-dioxides. U. S. Patent US3898218A, August 5, 1975.
  38. Kamisky, D.; Klutchko, S.; von Strandtmann, M. Polycyclic gamma-pyrone-3-carboxaldehyde derivatives. U. S. Patent US3959480A, May 25, 1976.
  39. Kamisky, D. Polycyclic dioxaborin complexes. U. S. Patent US3936488A, February 3, 1976.
  40. Kamisky, D. Hydroxymethylene-substituted chromone-3-carboxaldehydes, process for their preparation and intermediates produced thereby. U. S. Patent US3936563A, February 3, 1976.
  41. Kamisky, D. Process for the preparation of gamma-pyrone-3-carboxaldehydes. U. S. Patent US3862144A, January 21, 1975.
  42. Kamisky, D.; Klutchko, S.; von Strandtmann, M. Polycyclic gamma-pyrone-3-carboxaldehyde derivatives. U. S. Patent US3887585A, June 3, 1975.
  43. House, H. O.; Reif, D. J. The Rearrangement of α,β-Epoxy Ketones. II. Migratory Aptitudes 1. Am. Chem. Soc. 1955, 77 (24), 6525–6532. https://doi.org/10.1021/ja01629a035.
  44. House, H. O.; Reif, D. J. The Rearrangement of α,β-Epoxy Ketones. VII. The α-Ethylbenzalacetophenone Oxide System. Am. Chem. Soc. 1957, 79 (24), 6491–6495. https://doi.org/10.1021/ja01581a035.
  45. House, H. O.; Ryerson, G. D. The Rearrangement of α,β-Epoxy Ketones. VIII. Effect of Substituents on the Rate of Rearrangement. Am. Chem. Soc. 1961, 83 (4), 979–983. https://doi.org/10.1021/ja01465a052.
  46. Brown, N. M. D.; Bladon, P. Spectroscopy and Structure of (1,3-Diketonato)Boron Difluorides and Related Compounds. Chem. Soc. A 1969, 526. https://doi.org/10.1039/j19690000526.
  47. Fabian, J.; Hartmann, H. 1,3,2-Dioxaborines as Potential Components in Advanced Materials-a Theoretical Study on Electron Affinity. Phys. Org. Chem. 2004, 17 (5), 359–369. https://doi.org/10.1002/poc.736.
  48. Giron, R. G. P.; Ferguson, G. S. Tetrafluoroborate and Hexafluorophosphate Ions Are Not Interchangeable: A Density Functional Theory Comparison of Hydrogen Bonding. ChemistrySelect 2017, 2 (33), 10895–10901. https://doi.org/10.1002/SLCT.201702176.
  49. Schleyer, P. von R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. Am. Chem. Soc. 1996, 118 (26), 6317–6318. https://doi.org/10.1021/ja960582d.
  50. Borisenko, A. V.; Vovna, V. I.; Gorachakov, V. V.; Korotkikh, O. A. Photoelectron Spectra and Electron Structures of Some Boron b-Diketonates. J. Struct. Chem. 1987, 28 (1), 127–130. https://doi.org/10.1007/BF00749560.
  51. Vovna, V. I.; Kazachek, M. V.; L’vov, I. B. Excited States and Absorption Spectra of β-Diketonate Complexes of Boron Difluoride with Aromatic Substituents. Spectrosc. 2012, 112 (4), 497–505. https://doi.org/10.1134/S0030400X12030228.
  52. Vovna, V. I.; Tikhonov, S. A.; Lvov, I. B. Photoelectron Spectra and Electronic Structure of Boron Difluoride β-Diketonates with Aromatic Substituents. J. Phys. Chem. A 2013, 87 (4), 688–693. https://doi.org/10.1134/S0036024413040304.
  53. Tikhonov, S. A.; Vovna, V. I. Boron Chelate Complexes: X-Ray and UV Photoelectron Spectra and Electronic Structure. Chem. Bull. 2018, 67 (7), 1153–1166. https://doi.org/10.1007/s11172-018-2196-2.
  54. Foris, A. On 19F NMR Spectra of BF2 and BF Complexes and Related Compounds, 2016. https://doi.org/10.13140/RG.2.2.30488.60160.
  55. Gillespie, R. J.; Hartman, J. S. Change of Sign of the Boron–Fluorine Spin–Spin Coupling Constant in the Tetrafluoroborate Anion. Chem. Phys. 1966, 45 (7), 2712–2713. https://doi.org/10.1063/1.1728005.
  56. Tay, A. C. Y.; Frogley, B. J.; Ware, D. C.; Brothers, P. J. Boron Calixphyrin Complexes: Exploring the Coordination Chemistry of a BODIPY/Porphyrin Hybrid. Dalton Trans. 2018, 47 (10), 3388–3399. https://doi.org/10.1039/C7DT04575A.
    |
  57. Minkin, V. I. Glossary of Terms Used in Theoretical Organic Chemistry. Pure Appl. Chem. 1999, 71 (10), 1919–1981. https://doi.org/10.1351/pac199971101919.
  58. Desfrançois, C.; Périquet, V.; Lyapustina, S. A.; Lippa, T. P.; Robinson, D. W.; Bowen, K. H.; Nonaka, H.; Compton, R. N. Electron Binding to Valence and Multipole States of Molecules: Nitrobenzene, Para- and Meta-Dinitrobenzenes. Chem. Phys. 1999, 111 (10), 4569–4576. https://doi.org/10.1063/1.479218.
  59. Chowdhury, S.; Kebarle, P. Electron Affinities of Di- and Tetracyanoethylene and Cyanobenzenes Based on Measurements of Gas-Phase Electron-Transfer Equilibria. Am. Chem. Soc. 1986, 108 (18), 5453–5459. https://doi.org/10.1021/JA00278A014/ASSET/JA00278A014.FP.PNG_V03.
  60. Görlitz, G.; Hartmann, H.; Kossanyi, J.; Valat, P.; Wintgens, V. Spectroscopic Anomalies in the 4-Aryl-2,2-Difluoro-6-Methyl-1,3,2-Dioxaborine Series. Berichte der Bunsengesellschaft für physikalische Chemie 1998, 102 (10), 1449–1458. https://doi.org/10.1002/bbpc.199800013.
  61. Xu, S.; Evans, R. E.; Liu, T.; Zhang, G.; Demas, J. N.; Trindle, C. O.; Fraser, C. L. Aromatic Difluoroboron β-Diketonate Complexes: Effects of π-Conjugation and Media on Optical Properties. Chem. 2013, 52 (7), 3597–3610. https://doi.org/10.1021/IC300077G/SUPPL_FILE/IC300077G_SI_001.PDF.
    |
  62. Kulinich, A. V; Ishchenko, A. A. Merocyanine Dyes: Synthesis, Structure, Properties and Applications. Chem. Rev. 2009, 78 (2), 141–164. https://doi.org/10.1070/RC2009v078n02ABEH003900.
  63. Sturmer, D. M. Synthesis and Properties of Cyanine and Related Dyes. In Chemistry of Heterocyclic Compounds: Special Topics in Heterocyclic Chemistry, Volume 30; Weissberger, A; Taylor, E. C., Eds.; John Wiley & Sons: New York, 1977; pp. 441–587.
  64. Dähne, S. Color and Constitution: One Hundred Years of Research. Science 1978, 199 (4334), 1163–1167. https://doi.org/10.1126/science.199.4334.1163.
  65. Bach, G.; Daehne, S. Chapter 15 – Cyanine dyes and related compounds. In Second Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds, Volume IV; Sainsbury, M. Ed.; Elsevier: Amsterdam, 1997; pp. 383–481. https://doi.org/10.1016/B978-044453347-0.50165-8.
  66. Lawrentz, U.; Grahn, W.; Lukaszuk, K.; Klein, C.; Wortmann, R.; Feldner, A.; Scherer, D. Donor-Acceptor Oligoenes with a Locked All-Trans Conformation: Synthesis and Linear and Nonlinear Optical Properties. - Eur. J. 2002, 8 (7), 1573–1590. https://doi.org/10.1002/1521-3765(20020402)8:7<1573::AID-CHEM1573>3.0.CO;2-T.
    |
  67. Ishchenko, A. A.; Kulinich, A. V.; Bondarev, S. L.; Knyukshto, V. N. Photodynamics of Polyene−Polymethine Transformations and Spectral Fluorescent Properties of Merocyanine Dyes. Phys. Chem. A 2007, 111 (51), 13629–13637. https://doi.org/10.1021/jp076016u.
  68. Zhang, X.; Tian, Y.; Li, Z.; Tian, X.; Sun, H.; Liu, H.; Moore, A.; Ran, C. Design and Synthesis of Curcumin Analogues for in Vivo Fluorescence Imaging and Inhibiting Copper-Induced Cross-Linking of Amyloid Beta Species in Alzheimer’s Disease. Am. Chem. Soc. 2013, 135 (44), 16397–16409. https://doi.org/10.1021/ja405239v.
    |
  69. Gustav, K.; Bartsch, U.; Günther, W. Spektroskopische Untersuchungen an Organischen Carbonylverbindungen, 10. Mitt.: Vergleichende Absorptions-, Fluoreszenz- Und NMR-Messungen an Ausgewählten β-Diketonen Und Ihren BF2- Und Be-Komplexen. Monatshefte für Chemie / Chemical Monthly 1994, 125 (12), 1321–1325. https://doi.org/10.1007/BF00811081.
  70. D’Aléo, A.; Gachet, D.; Heresanu, V.; Giorgi, M.; Fages, F. Efficient NIR-Light Emission from Solid-State Complexes of Boron Difluoride with 2′-Hydroxychalcone Derivatives. – Eur. J. 2012, 18 (40), 12764–12772. https://doi.org/10.1002/CHEM.201201812.
    |
  71. D’Aléo, A.; Felouat, A.; Fages, F. Boron Difluoride Complexes of 2′-Hydroxychalcones and Curcuminoids as Fluorescent Dyes for Photonic Applications. Nat. Sci.: Nanosci. Nanotechnol. 2014, 6 (1), 015009. https://doi.org/10.1088/2043-6262/6/1/015009.
  72. Park, K. S.; Kim, M. K.; Seo, Y.; Ha, T.; Yoo, K.; Hyeon, S. J.; Hwang, Y. J.; Lee, J.; Ryu, H.; Choo, H.; Chong, Y. A Difluoroboron β-Diketonate Probe Shows “Turn-on” Near-Infrared Fluorescence Specific for Tau Fibrils. ACS Chem. Neurosci. 2017, 8 (10), 2124–2131. https://doi.org/10.1021/acschemneuro.7b00224.
    |
  73. Traven, V. F.; Chibisova, T. A.; Manaev, A. V. Polymethine Dyes Derived from Boron Complexes of Acetylhydroxycoumarins. Dyes Pigm. 2003, 58 (1), 41–46. https://doi.org/10.1016/S0143-7208(03)00022-6.
  74. Gerasov, A. O.; Shandura, M. P.; Kovtun, Y. P. Polymethine Dyes Derived from the Boron Difluoride Complex of 3-Acetyl-5,7-Di(Pyrrolidin-1-yl)-4-Hydroxycoumarin. Dyes Pigm. 2008, 79 (3), 252–258. https://doi.org/10.1016/j.dyepig.2008.03.005.
  75. Gerasov, A. O.; Zyabrev, K. V.; Shandura, M. P.; Kovtun, Y. P. The Structural Criteria of Hydrolytic Stability in Series of Dioxaborine Polymethine Dyes. Dyes Pigm. 2011, 89 (1), 76–85. https://doi.org/10.1016/j.dyepig.2010.09.007.
  76. Zyabrev, K.; Dekhtyar, M.; Vlasenko, Y.; Chernega, A.; Slominskii, Y.; Tolmachev, A. New 2,2-Difluoro-1,3,2(2H)Oxazaborines and Merocyanines Derived from Them. Dyes Pigm. 2012, 92 (1), 749–757. https://doi.org/10.1016/J.DYEPIG.2011.05.025.
  77. Traven, V. F.; Manaev, A. V.; Bochkov, A. Y.; Chibisova, T. A.; Ivanov, I. V. New Reactions, Functional Compounds, and Materials in the Series of Coumarin and Its Analogs. Chem. Bull. 2012, 61 (7), 1342–1362. https://doi.org/10.1007/s11172-012-0179-2.
  78. Gerasov, A. O.; Shandura, M. P.; Kovtun, Y. P. Series of Polymethine Dyes Derived from 2,2-Difluoro-1,3,2-(2H)-Dioxaborine of 3-Acetyl-7-Diethylamino-4-Hydroxycoumarin. Dyes Pigm. 2008, 77 (3), 598–607. https://doi.org/10.1016/j.dyepig.2007.08.013.
  79. Halik, M.; Hartmann, H. Synthesis and Characterization of New Long-Wavelength-Absorbing Oxonol Dyes from the 2,2-Difluoro-1,3,2-Dioxaborine Type. – Chem. Eur. J. 1999, 5 (9), 2511–2517. https://doi.org/10.1002/(SICI)1521-3765(19990903)5:9<2511::AID-CHEM2511>3.0.CO;2-6.
  80. Zyabrev, K.; Doroshenko, A.; Mikitenko, E.; Slominskii, Y.; Tolmachev, A. Design, Synthesis, and Spectral Luminescent Properties of a Novel Polycarbocyanine Series Based on the 2,2-Difluoro-1,3,2-Dioxaborine Nucleus. Eur. J. Org. Chem. 2008, 2008 (9), 1550–1558. https://doi.org/10.1002/EJOC.200701012.
  81. Lin, H. C.; Kim, H.; Barlow, S.; Hales, J. M.; Perry, J. W.; Marder, S. R. Synthesis and Linear and Nonlinear Optical Properties of Metal-Terminated Bis(Dioxaborine) Polymethines. Commun. 2010, 47 (2), 782–784. https://doi.org/10.1039/C0CC02003F.
  82. Matichak, J. D.; Hales, J. M.; Barlow, S.; Perry, J. W.; Marder, S. R. Dioxaborine- and Indole-Terminated Polymethines: Effects of Bridge Substitution on Absorption Spectra and Third-Order Polarizabilities. Phys. Chem. A 2011, 115 (11), 2160–2168. https://doi.org/10.1021/jp110425r.
  83. Zyabrev, K. V.; Il’chenko, A. Y.; Slominskii, Y. L.; Rimanov, N. N.; Tolmachev, A. I. Polymethine Dyes Derived from 2,2-Difluoro-3,1,2-(2H)-Oxaoxoniaboratines with Polymethylene Bridge Groups in the Chromophore. Dyes Pigm. 2006, 71 (3), 199–206. https://doi.org/10.1016/J.DYEPIG.2005.07.006.
  84. Rajeshirke, M.; Tathe, A. B.; Sekar, N. Viscosity Sensitive Fluorescent Coumarin-Carbazole Chalcones and Their BF2 Complexes Containing Carboxylic Acid – Synthesis and Solvatochromism. Mol. Liq. 2018, 264, 358–366. https://doi.org/10.1016/J.MOLLIQ.2018.05.074.
  85. Sun, Q.; Wang, W.; Chen, Z.; Yao, Y.; Zhang, W.; Duan, L.; Qian, J. A Fluorescence Turn-on Probe for Human (Bovine) Serum Albumin Based on the Hydrolysis of a Dioxaborine Group Promoted by Proteins. Commun. 2017, 53 (48), 6432–6435. https://doi.org/10.1039/C7CC03587J.
    |
  86. Zhou, J.; Jangili, P.; Son, S.; Ji, M. S.; Won, M.; Kim, J. S. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. Mater. 2020, 32 (51), 2001945. https://doi.org/10.1002/ADMA.202001945.
    |
  87. Yang, J.; Zeng, F.; Li, X.; Ran, C.; Xu, Y.; Li, Y. Highly Specific Detection of Aβ Oligomers in Early Alzheimer’s Disease by a near-Infrared Fluorescent Probe with a “V-Shaped” Spatial Conformation. Commun. 2020, 56 (4), 583–586. https://doi.org/10.1039/C9CC08894F.
    |
  88. Zhou, Y.; Chen, Y. Z.; Cao, J. H.; Yang, Q. Z.; Wu, L. Z.; Tung, C. H.; Wu, D. Y. Dicyanoboron Diketonate Dyes: Synthesis, Photophysical Properties and Bioimaging. Dyes Pigm. 2015, 112, 162–169. https://doi.org/10.1016/J.DYEPIG.2014.07.001.
  89. Dewar, M. J. S. 478. Colour and Constitution. Part I. Basic Dyes. Chem. Soc. 1950, 2329. https://doi.org/10.1039/jr9500002329.
  90. Knott, E. B. 227. The Colour of Organic Compounds. Part I. A General Colour Rule. Chem. Soc. 1951, 1024. https://doi.org/10.1039/jr9510001024.
  91. Borysyuk, V. І.; Yashchuk, V. M.; Naumenko, A. P.; Stanova, А. V.; Gerasova, V. G.; Gerasov, А. O.; Kovtun, Y. P.; Shandura, M. P.; Kachkovsky, O. D. Influence of Surplus Negative Charge on Absorption and Fluorescence Excitation Spectra of Asymmetric Polymethine Dyes. Ukr. J. Phys. 2015, 60 (7), 593-600-593–600. https://doi.org/10.15407/ujpe60.07.0593.
  92. Gerasov, A. O.; Shandura, M. P.; Kovtun, Y. P.; Kachkovsky, A. D. The Nature of Electron Transitions in Anionic Dioxaborines, Derivatives of Aminocoumarin. Phys. Org. Chem. 2008, 21 (5), 419–425. https://doi.org/10.1002/POC.1368.
  93. Tyutyulkov, N.; Fabian, J.; Mehlhorn, A.; Dietz, F.; Tadjer, A., Eds. Polymethine Dyes: Structure and Properties. St. Kliment Ohridski University Pres: Sofia, 1991.
  94. Uranga-Barandiaran, O.; Catherin, M.; Zaborova, E.; D’Aléo, A.; Fages, F.; Castet, F.; Casanova, D. Optical Properties of Quadrupolar and Bi-Quadrupolar Dyes: Intra and Inter Chromophoric Interactions. Chem. Chem. Phys. 2018, 20 (38), 24623–24632. https://doi.org/10.1039/C8CP05048A.
    |
  95. Dirk, C. W.; Herndon, W. C.; Cervantes-Lee, F.; Selnau, H.; Martinez, S.; Kalamegham, P.; Tan, A.; Campos, G.; Velez, M. Squarylium Dyes: Structural Factors Pertaining to the Negative Third-Order Nonlinear Optical Response. Am. Chem. Soc. 1995, 117 (8), 2214–2225. https://doi.org/10.1021/ja00113a011.
  96. Terenziani, F.; Painelli, A.; Katan, C.; Charlot, M.; Blanchard-Desce, M. Charge Instability in Quadrupolar Chromophores: Symmetry Breaking and Solvatochromism. Am. Chem. Soc. 2006, 128 (49), 15742–15755. https://doi.org/10.1021/ja064521j.
  97. Ran, C.; Xu, X.; Raymond, S. B.; Ferrara, B. J.; Neal, K.; Bacskai, B. J.; Medarova, Z.; Moore, A. Design, Synthesis, and Testing of Difluoroboron-Derivatized Curcumins as Near-Infrared Probes for in Vivo Detection of Amyloid-β Deposits. Am. Chem. Soc. 2009, 131 (42), 15257–15261. https://doi.org/10.1021/ja9047043.
    |
  98. Selkoe, D. J. Translating Cell Biology into Therapeutic Advances in Alzheimer’s Disease. Nature 1999, 399 (6738), A23–A31. https://doi.org/10.1038/399a023.
    |
  99. Li, Z.; Song, Y.; Lu, Z.; Li, Z.; Li, R.; Li, Y.; Hou, S.; Zhu, Y.-P.; Guo, H. Novel Difluoroboron Complexes of Curcumin Analogues as “Dual-Dual” Sensing Materials for Volatile Acid and Amine Vapors. Dyes Pigm. 2020, 179, 108406. https://doi.org/10.1016/j.dyepig.2020.108406.
  100. Bai, G.; Yu, C.; Cheng, C.; Hao, E.; Wei, Y.; Mu, X.; Jiao, L. Syntheses and Photophysical Properties of BF2 Complexes of Curcumin Analogues. Org. Biomol. Chem. 2014, 12 (10), 1618–1626. https://doi.org/10.1039/C3OB42201A.
    |
  101. Liu, K.; Chen, J.; Chojnacki, J.; Zhang, S. BF3OEt2-Promoted Concise Synthesis of Difluoroboron-Derivatized Curcumins from Aldehydes and 2,4-Pentanedione. Tetrahedron Lett. 2013, 54 (16), 2070–2073. https://doi.org/10.1016/j.tetlet.2013.02.015.
  102. Felouat, A.; D’Aléo, A.; Fages, F. Synthesis and Photophysical Properties of Difluoroboron Complexes of Curcuminoid Derivatives Bearing Different Terminal Aromatic Units and a Meso-Aryl Ring. Org. Chem. 2013, 78 (9), 4446–4455. https://doi.org/10.1021/jo400389h.
  103. Sherin, D. R.; Thomas, S. G.; Rajasekharan, K. N. Mechanochemical Synthesis of 2,2-Difluoro-4,6-Bis(β-Styryl)-1,3,2-Dioxaborines and Their Use in Cyanide Ion Sensing. Commun. 2015, 21 (6), 381–385. https://doi.org/10.1515/hc-2015-0096.
  104. Rivoal, M.; Zaborova, E.; Canard, G.; D’Aléo, A.; Fages, F. Synthesis, Electrochemical and Photophysical Studies of the Borondifluoride Complex of a Meta-Linked Biscurcuminoid. New J. Chem. 2016, 40 (2), 1297–1305. https://doi.org/10.1039/C5NJ00925A.
  105. Canard, G.; Ponce-Vargas, M.; Jacquemin, D.; Le Guennic, B.; Felouat, A.; Rivoal, M.; Zaborova, E.; D’Aléo, A.; Fages, F. Influence of the Electron Donor Groups on the Optical and Electrochemical Properties of Borondifluoride Complexes of Curcuminoid Derivatives: A Joint Theoretical and Experimental Study. RSC Adv. 2017, 7 (17), 10132–10142. https://doi.org/10.1039/C6RA25436E.
  106. Kamada, K.; Namikawa, T.; Senatore, S.; Matthews, C.; Lenne, P.-F.; Maury, O.; Andraud, C.; Ponce-Vargas, M.; Le Guennic, B.; Jacquemin, D.; Agbo, P.; An, D. D.; Gauny, S. S.; Liu, X.; Abergel, R. J.; Fages, F.; D’Aléo, A. Boron Difluoride Curcuminoid Fluorophores with Enhanced Two-Photon Excited Fluorescence Emission and Versatile Living-Cell Imaging Properties. - Eur. J. 2016, 22 (15), 5219–5232. https://doi.org/10.1002/chem.201504903.
    |
  107. Chaicham, A.; Kulchat, S.; Tumcharern, G.; Tuntulani, T.; Tomapatanaget, B. Synthesis, Photophysical Properties, and Cyanide Detection in Aqueous Solution of BF2-Curcumin Dyes. Tetrahedron 2010, 66 (32), 6217–6223. https://doi.org/10.1016/j.tet.2010.05.088.
  108. Margar, S. N.; Rhyman, L.; Ramasami, P.; Sekar, N. Fluorescent Difluoroboron-Curcumin Analogs: An Investigation of the Electronic Structures and Photophysical Properties. Acta, Part A 2016, 152, 241–251. https://doi.org/10.1016/j.saa.2015.07.064.
    |
  109. Raikwar, M. M.; Rhyman, L.; Ramasami, P.; Sekar, N. Theoretical Investigation of Difluoroboron Complex of Curcuminoid Derivatives with and without Phenyl Substituent (at Meso Position): Linear and Non-Linear Optical Study. ChemistrySelect 2018, 3 (40), 11339–11349. https://doi.org/10.1002/SLCT.201802231.
  110. Insuasty, D.; Cabrera, L.; Ortiz, A.; Insuasty, B.; Quiroga, J.; Abonia, R. Synthesis, Photophysical Properties and Theoretical Studies of New Bis-Quinolin Curcuminoid BF2-Complexes and Their Decomplexed Derivatives. Acta, Part A 2020, 230, 118065. https://doi.org/10.1016/J.SAA.2020.118065.
    |
  111. Choi, K.-R.; Kim, D. H.; Lee, Y. U.; Placide, V.; Huynh, S.; Yao, D.; Canard, G.; Zaborova, E.; Mathevet, F.; Mager, L.; Heinrich, B.; Ribierre, J.-C.; Wu, J. W.; Fages, F.; D’Aléo, A. Effect of the Electron Donating Group on the Excited-State Electronic Nature and Epsilon-near-Zero Properties of Curcuminoid-Borondifluoride Dyes. RSC Adv. 2021, 11 (60), 38247–38257. https://doi.org/10.1039/D1RA08025C.
  112. Zhang, X.; Tian, Y.; Yuan, P.; Li, Y.; Yaseen, M. A.; Grutzendler, J.; Moore, A.; Ran, C. A Bifunctional Curcumin Analogue for Two-Photon Imaging and Inhibiting Crosslinking of Amyloid Beta in Alzheimer’s Disease. Commun. 2014, 50 (78), 11550–11553. https://doi.org/10.1039/C4CC03731F.
    |
  113. Zhang, X.; Tian, Y.; Zhang, C.; Tian, X.; Ross, A. W.; Moir, R. D.; Sun, H.; Tanzi, R. E.; Moore, A.; Ran, C. Near-Infrared Fluorescence Molecular Imaging of Amyloid Beta Species and Monitoring Therapy in Animal Models of Alzheimer’s Disease. PNAS 2015, 112 (31), 9734–9739. https://doi.org/10.1073/pnas.1505420112.
    |
  114. Zhang, P.; Guo, Z. Q.; Yan, C. X.; Zhu, W. H. Near-Infrared Mitochondria-Targeted Fluorescent Probe for Cysteine Based on Difluoroboron Curcuminoid Derivatives. Chem. Lett. 2017, 28 (10), 1952–1956. https://doi.org/10.1016/J.CCLET.2017.08.038.
  115. Chen, D.; Yang, J.; Dai, J.; Lou, X.; Zhong, C.; Yu, X.; Xia, F. A Low Background D–A–D Type Fluorescent Probe for Imaging of Biothiols in Living Cells. Mater. Chem. B 2018, 6 (32), 5248–5255. https://doi.org/10.1039/C8TB01340C.
    |
  116. Bai, B.; Yan, C.; Zhang, Y.; Guo, Z.; Zhu, W. H. Dual-Channel near-Infrared Fluorescent Probe for Real-Time Tracking of Endogenous γ-Glutamyl Transpeptidase Activity. Commun. 2018, 54 (87), 12393–12396. https://doi.org/10.1039/C8CC07376G.
    |
  117. Archet, F.; Yao, D.; Chambon, S.; Abbas, M.; D’Aléo, A.; Canard, G.; Ponce-Vargas, M.; Zaborova, E.; Le Guennic, B.; Wantz, G.; Fages, F. Synthesis of Bioinspired Curcuminoid Small Molecules for Solution-Processed Organic Solar Cells with High Open-Circuit Voltage. ACS Energy Lett. 2017, 2 (6), 1303–1307. https://doi.org/10.1021/acsenergylett.7b00157.
  118. Sherin, D. R.; Manojkumar, T. K.; Rajasekharan, K. N. CRANAD-1 as a Cyanide Sensor in Aqueous Media: A Theoretical Study. RSC Adv. 2016, 6 (101), 99385–99390. https://doi.org/10.1039/C6RA19045F.
  119. Zhang, Y.; Tu, L.; Lu, L.; Li, Y.; Song, L.; Qi, Q.; Song, H.; Li, Z.; Huang, W. Screening and Application of Boron Difluoride Complexes of Curcumin as Colorimetric and Ratiometric Fluorescent Probes for Bisulfite. Methods 2020, 12 (11), 1514–1521. https://doi.org/10.1039/D0AY00173B.
  120. Zhao, X.; Yang, Y.; Yu, Y.; Guo, S.; Wang, W.; Zhu, S. A Cyanine-Derivative Photosensitizer with Enhanced Photostability for Mitochondria-Targeted Photodynamic Therapy. Commun. 2019, 55 (90), 13542–13545. https://doi.org/10.1039/C9CC06157F.
    |
  121. Polishchuk, V.; Stanko, M.; Kulinich, A.; Shandura, M. D–π–A–π–D Dyes with a 1,3,2-Dioxaborine Cycle in the Polymethine Chain: Efficient Long-Wavelength Fluorophores. J. Org. Chem. 2018, 2018 (2), 240–246. https://doi.org/10.1002/ejoc.201701466.
  122. Polishchuk, V.; Kulinich, A.; Suikov, S.; Rusanov, E.; Shandura, M. ‘Hybrid’ Mero-Anionic Polymethines with a 1,3,2-Dioxaborine Core. New J. Chem. 2022, 46 (3), 1273–1285. https://doi.org/10.1039/D1NJ05104K.
  123. Polishchuk, V.; Kulinich, A.; Rusanov, E.; Shandura, M. Highly Fluorescent Dianionic Polymethines with a 1,3,2-Dioxaborine Core. Org. Chem. 2021, 86 (7), 5227–5233. https://doi.org/10.1021/acs.joc.1c00138.
  124. Polishchuk, V.; Filatova, M.; Rusanov, E.; Shandura, M. Trianionic 1,3,2‐Dioxaborine‐Containing Polymethines: Bright Near‐Infrared Fluorophores. Chem. – Eur. J. 2022. https://doi.org/10.1002/chem.202202168.
    |

Downloads

Published

2023-05-31

How to Cite

(1)
Polishchuk, V. M.; Shandura, M. P. Polymethine Dyes Based on 2,2-Difluoro-1,3,2-Dioxaborine: A Minireview. J. Org. Pharm. Chem. 2023, 20, 27-53.

Issue

Section

Review Articles