Synthesis of Functionalized 4,5-Dihydroisoxazoles Decorated with the Dimethylphosphinoyl Group

Authors

  • Andrii V. Fedyk Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine
  • Bohdan A. Chalyk Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.23.283988

Keywords:

dimethylphosphine oxide, isoxazoline, dipolar cycloaddition, nitrile oxide, halogenoximes, selectivity, ADME profile

Abstract

Aim. To synthesize a hybrid molecular platform incorporating dimethylphosphinoyl and 4,5-dihydroisoxazole moieties suitable for the creation of focused combinatorial libraries of compounds.
Results and discussion. The base-promoted interaction of halogenoxides with dimethyl(vinyl)phosphine oxide under mild conditions allowed us to obtain 11 isoxazoline–dimethylphosphine oxide hybrids in moderate yields. The reaction was found to be regio- though non-stereoselective. Furoxans were identified as possible side products of the reaction.
Experimental part. The one-pot interaction with dimethyl(vinyl)phosphine oxide was used for the synthesis of the target compounds. Nitrile oxides were obtained in situ from the corresponding halogenoximes by base-promoted generation. The ADME parameters for a synthesized 5-P(O)Me2-isoxazoline compared to its isosters with the same core structure were predicted using a SwissADME Web Tool. The compounds obtained were characterized by 1H, 13C, 19F, 31P NMR spectroscopy and HPLC-MS spectrometry methods, as well as the elemental analysis.
Conclusions. A practical approach to the isoxazoline platform decorated with a 5-P(O)Me2 “magic” group and containing 3-substituent with an easy-to-modify functionality has been developed. On example of the piperidine derivative, the effect of the dimethylphosphinoyl group on physicochemical properties and ADME parameters compared to its isosters has been determined.

Supporting Agency

  • The author received no specific funding for this work.Remove The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Bhattu, M.; Verma, M.; Kathuria, D., Recent advancements in the detection of organophosphate pesticides: a review. Analytical Methods 2021, 13 (38), 4390-4428. https://doi.org/10.1039/D1AY01186C.
    |
  2. Thakur, M.; Medintz, I. L.; Walper, S. A., Enzymatic Bioremediation of Organophosphate Compounds — Progress and Remaining Challenges. Frontiers in Bioengineering and Biotechnology 2019, 7. https://doi.org/10.3389/fbioe.2019.00289.
    |
  3. Iaroshenko, V. Phosphorus in Chemical Biology and Medicinal Chemistry. In Organophosphorus Chemistry, V. Iaroshenko (Ed.). 2019; pp 499-544. https://doi.org/10.1002/9783527672240.ch10.
  4. Denoix, J. M.; Thibaud, D.; Riccio, B., Tiludronate as a new therapeutic agent in the treatment of navicular disease: a double-blind placebo-controlled clinical trial. Equine Veterinary Journal 2003, 35 (4), 407-413. https://doi.org/10.2746/042516403776014226.
    |
  5. Akre, C. The Use of Pyrethroids, Carbamates, Organophosphates, and Other Pesticides in Veterinary Medicine. In Chemical Analysis of Non‐antimicrobial Veterinary Drug Residues in Food, 2016; pp 383-426. https://doi.org/10.1002/9781118696781.ch7.
  6. Pharmaceutical Manufacturing Encyclopedia. 3rd Ed. William Andrew Publishing, Norwish NY: Elsevier; 2007; pp. 56m-57m. https://doi.org/10.1016/B978-0-8155-1526-5.50017-9
  7. Garnock-Jones, K. P., Fosaprepitant Dimeglumine: A Review in the Prevention of Nausea and Vomiting Associated with Chemotherapy. Drugs 2016, 76 (14), 1365-1372. https://doi.org/10.1007/s40265-016-0627-7.
    |
  8. Nordgren, I.; Bengtsson, E.; Holmstedt, B.; Pettersson, B.-M., Levels of Metrifonate and Dichlorvos in Plasma and Erythrocytes during Treatment of Schistosomiasis with Bilarcil®. Acta Pharmacologica et Toxicologica 1981, 49 (s5), 79-86. https://doi.org/10.1111/j.1600-0773.1981.tb03256.x.
    |
  9. Duchin, K. L.; Waclawski, A. P.; Tu, J. I.; Manning, J.; Frantz, M.; Willard, D. A., Pharmacokinetics, Safety, and Pharmacologic Effects of Fosinopril Sodium, an Angiotensin-Converting Enzyme Inhibitor in Healthy Subjects. The Journal of Clinical Pharmacology 1991, 31 (1), 58-64. https://doi.org/10.1002/j.1552-4604.1991.tb01887.x.
    |
  10. Ala-Houhala, I.; Saha, H.; Liukko-Sipi, S.; Ylitalo, P.; Pasternack, A., Pharmacokinetics of clodronate in haemodialysis patients. Nephrology Dialysis Transplantation 1999, 14 (3), 699-705. https://doi.org/10.1093/ndt/14.3.699.
    |
  11. Roberti, G.; Tanga, L.; Michelessi, M.; Quaranta, L.; Parisi, V.; Manni, G.; Oddone, F. Cytidine 5′-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives. Int. J. Mol. Sci.201516, 28401-28417. https://doi.org/10.3390/ijms161226099.
    |
  12. Smith, B. R.; Eastman, C. M.; Njardarson, J. T., Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. J. Med. Chem. 2014, 57 (23), 9764-9773. https://doi.org/10.1021/jm501105n.
    |
  13. Yu, H.; Yang, H.; Shi, E.; Tang, W. Development and Clinical Application of Phosphorus-Containing Drugs. Medicine in Drug Discovery 2020, 8, 100063. https://doi.org/10.1016/j.medidd.2020.100063.
  14. Rodriguez, J. B.; Gallo-Rodriguez, C. The Role of the Phosphorus Atom in Drug Design. ChemMedChem 2019, 14 (2), 190-216. https://doi.org/10.1002/cmdc.201800693.
    |
  15. Buckner, F. S.; Urbina, J. A. Recent developments in sterol 14-demethylase inhibitors for Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance 2012, 2, 236-242. https://doi.org/10.1016/j.ijpddr.2011.12.002.
    |
  16. Rodriguez, J. B.; Falcone, B. N.; Szajnman, S. H. Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015). Expert Opinion on Therapeutic Patents 2016, 26 (9), 993-1015. https://doi.org/10.1080/13543776.2016.1209487.
    |
  17. Wiemer, A. J.; Wiemer, D. F. Prodrugs of Phosphonates and Phosphates: Crossing the Membrane Barrier. In Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds, Montchamp, J.-L., Ed. Springer International Publishing: Cham, 2015; pp 115-160. https://doi.org/10.1007/128_2014_561.
    |
  18. Laurence, C.; Brameld, K. A.; Graton, J.; Le Questel, J.-Y.; Renault, E. The pKBHX Database: Toward a Better Understanding of Hydrogen-Bond Basicity for Medicinal Chemists. J. Med. Chem. 2009, 52 (14), 4073-4086. https://doi.org/10.1021/jm801331y.
    |
  19. National Cancer Institute. FDA Grants Brigatinib Accelerated Approval for Metastatic Non-Small Cell Lung Cancer. https://www.cancer.gov/news-events/cancer-currents-blog/2017/brigatinib-fda-lung-cancer (accessed Apr 15, 2023).
  20. Bedi, S.; Khan, S. A.; AbuKhader, M. M.; Alam, P.; Siddiqui, N. A.; Husain, A. A comprehensive review on Brigatinib – A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharmaceutical Journal 2018, 26 (6), 755-763. https://doi.org/10.1016/j.jsps.2018.04.010.
    |
  21. Finkbeiner, P.; Hehn, J. P.; Gnamm, C. Phosphine Oxides from a Medicinal Chemist’s Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery. J. Med. Chem. 2020, 63 (13), 7081-7107. https://doi.org/10.1021/acs.jmedchem.0c00407.
    |
  22. Fedyk, A.; Slobodyanyuk, E. Y.; Stotska, O.; Vashchenko, B. V.; Volochnyuk, D. M.; Sibgatulin, D. A.; Tolmachev, A. A.; Grygorenko, O. O. Heteroaliphatic Dimethylphosphine Oxide Building Blocks: Synthesis and Physico-chemical Properties. Eur. J. Org. Chem. 2021, 2021 (47), 6591-6603. https://doi.org/10.1002/ejoc.202100581.
  23. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57 (24), 10257-10274. https://doi.org/10.1021/jm501100b.
    |
  24. Nath, C. P.; Kumar, N.; Hazra, K. K.; Praharaj, C. S.; Singh, S. S.; Dubey, R. P.; Sharma, A. R. Topramezone: A selective post-emergence herbicide in chickpea for higher weed control efficiency and crop productivity. Crop Protection 2021, 150, 105814. https://doi.org/10.1016/j.cropro.2021.105814.
  25. Arends, J. E.; Hoepelman, A. I. M.; Nanlohy, N. M.; Höppener, F. J. P.; Hirsch, K. R.; Park, J. G.; van Baarle, D. Low doses of the novel caspase-inhibitor GS-9450 leads to lower caspase-3 and -8 expression on peripheral CD4+ and CD8+ T-cells. Apoptosis 2011, 16 (9), 959-966. https://doi.org/10.1007/s10495-011-0620-2.
    |
  26. Walther, F. M.; Allan, M. J.; Roepke, R. K. A.; Nuernberger, M. C. The effect of food on the pharmacokinetics of oral fluralaner in dogs. Parasites & Vectors 2014, 7 (1), 84. https://doi.org/10.1186/1756-3305-7-84.
    |
  27. Martin, D. G.; Chidester, C. G.; Mizsak, S. A.; Duchamp, D. J.; Baczysnkyj, L. The isolation, structure, and absolute configuration of U-43,795, a new antitumor agent. J. Antibiot. (Tokyo) 1975, 28 (1), 91-93. https://doi.org/10.7164/antibiotics.28.91.
    |
  28. Nicacio, K. J.; Ióca, L. P.; Fróes, A. M.; Leomil, L.; Appolinario, L. R.; Thompson, C. C.; Thompson, F. L.; Ferreira, A. G.; Williams, D. E.; Andersen, R. J.; Eustaquio, A. S.; Berlinck, R. G. S. Cultures of the Marine Bacterium Pseudovibrio denitrificans Ab134 Produce Bromotyrosine-Derived Alkaloids Previously Only Isolated from Marine Sponges. J. Nat. Prod. 2017, 80 (2), 235-240. https://doi.org/10.1021/acs.jnatprod.6b00838.
    |
  29. Tang, J.-w.; Hu, K.; Su, X.-z.; Li, X.-n.; Yan, B.-c.; Sun, H.-d.; Puno, P.-t. Phomopsisins A–C: Three new cytochalasans from the plant endophytic fungus Phomopsis sp. sh917. Tetrahedron 2020, 76 (39), 131475. https://doi.org/10.1016/j.tet.2020.131475.
  30. Chalyk, B. A.; Hrebeniuk, K. V.; Gavrilenko, K. S.; Shablykin, O. V.; Yanshyna, O. O.; Bash, D.; Mykhailiuk, P. K.; Liashuk, O. S.; Grygorenko, O. O. Synthesis of Bi- and Polyfunctional Isoxazoles from Amino Acid Derived Halogenoximes and Active Methylene Nitriles. Eur. J. Org. Chem. 2018, 2018 (22), 2753-2761. https://doi.org/10.1002/ejoc.201800311.
  31. Chalyk, B. A.; Hrebeniuk, K. V.; Gavrilenko, K. S.; Kulik, I. B.; Rozhenko, A. B.; Volochnyuk, D. M.; Liashuk, O. S.; Grygorenko, O. O. Synthesis of 4-Hetarylisoxazoles from Amino Acid-Derived Halogenoximes and Push-Pull Enamines. Eur. J. Org. Chem. 2018, 2018 (40), 5585-5595. https://doi.org/10.1002/ejoc.201800753.
  32. Chalyk, B. A.; Khutorianskyi, A. V.; Vashchenko, B. V.; Danyleiko, K.; Grynyova, A.; Osipova, A. O.; Kozytskiy, A.; Syniuchenko, D.; Tsymbaliuk, A.; Gavrilenko, K. S.; Biitseva, A. V.; Volochnyuk, D. M.; Komarov, I. V.; Grygorenko, O. O. Reductive Recyclization of sp3-Enriched Functionalized Isoxazolines into α-Hydroxy Lactams. J. Org. Chem. 2022, 87 (2), 1001-1018. https://doi.org/10.1021/acs.joc.1c02301.
    |
  33. Chalyk, B. A.; Sosedko, A. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Gavrilenko, K. S.; Liashuk, O. S.; Grygorenko, O. O. Regioselective synthesis of isoxazole and 1,2,4-oxadiazole-derived phosphonates via [3 + 2] cycloaddition. Org. Biomol. Chem. 2018, 16 (47), 9152-9164. https://doi.org/10.1039/C8OB02257G.
    |
  34. Chalyk, B. A.; Kandaurova, I. Y.; Hrebeniuk, K. V.; Manoilenko, O. V.; Kulik, I. B.; Iminov, R. T.; Kubyshkin, V.; Tverdokhlebov, A. V.; Ablialimov, O. K.; Mykhailiuk, P. K. A base promoted multigram synthesis of aminoisoxazoles: valuable building blocks for drug discovery and peptidomimetics. RSC Adv. 2016, 6 (31), 25713-25723. https://doi.org/10.1039/C6RA02365G.
  35. Leng, L.; Zhou, X.; Liao, Q.; Wang, F.; Song, H.; Zhang, D.; Liu, X.-Y.; Qin, Y. Asymmetric Total Syntheses of Kopsia Indole Alkaloids. Angew. Chem. Int. Ed. 2017, 56 (13), 3703-3707. https://doi.org/10.1002/anie.201700831.
    |
  36. Poh, J.-S.; García-Ruiz, C.; Zúñiga, A.; Meroni, F.; Blakemore, D. C.; Browne, D. L.; Ley, S. V., Synthesis of trifluoromethylated isoxazoles and their elaboration through inter- and intra-molecular C–H arylation. Org. Biomol. Chem. 2016, 14 (25), 5983-5991. https://doi.org/10.1039/C6OB00970K.
    |
  37. Kusakabe, K.-I.; Yoshida, S.; Nakahara, K.; Hasegawa, T.; Tadano, G.; Fuchino, K. Dihydrooxazine or oxazepine derivatives having bace1 inhibitory activity. WO2014065434A1, May 5, 2014.
  38. Minter, A. R.; Fuller, A. A.; Mapp, A. K. A Concise Approach to Structurally Diverse β-Amino Acids. J. Am. Chem. Soc. 2003, 125 (23), 6846-6847. https://doi.org/10.1021/ja0298747.
    |
  39. Breugst, M.; Reissig, H.-U., The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew. Chem. Int. Ed. 2020, 59 (30), 12293-12307. https://doi.org/10.1002/anie.202003115.
    |
  40. Stambirskyi, M. V.; Kostiuk, T.; Sirobaba, S. I.; Rudnichenko, A.; Titikaiev, D. L.; Dmytriv, Y. V.; Kuznietsova, H.; Pishel, I.; Borysko, P.; Mykhailiuk, P. K. Phosphine Oxides (−POMe2) for Medicinal Chemistry: Synthesis, Properties, and Applications. J. Org. Chem. 2021, 86 (18), 12783-12801. https://doi.org/10.1021/acs.joc.1c01413.
    |
  41. Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports 2017, 7 (1), 42717. https://doi.org/10.1038/srep42717.
    |
  42. SwissADME. http://www.swissadme.ch/index.php (accessed Mar 13, 2023).

Downloads

Published

2023-08-30

How to Cite

(1)
Fedyk, A. V.; Chalyk, B. A. Synthesis of Functionalized 4,5-Dihydroisoxazoles Decorated With the Dimethylphosphinoyl Group. J. Org. Pharm. Chem. 2023, 21, 41-52.

Issue

Section

Original Researches