Synthesis of a New Series of Chromones Based on Formylthiazoles

Authors

DOI:

https://doi.org/10.24959/ophcj.23.292844

Keywords:

thiazole, chromone, heterocycle, complex formation

Abstract

A preparative approach to thiazole-containing chromone derivatives has been developed by modifying the corresponding aldehydes with their further transformation into propenone derivatives, and finally introducing them into the Algar-Flynn-Oyamada reaction. Several methods for obtaining propenones have been analyzed, and the most effective and practically convenient one has been found. The thiazole-containing analogs of chromones obtained have a great potential as probes for a wide range of studies.

Supporting Agency

  • The author received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Klymchenko, A. S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50 (2), 366-375. https://doi.org/10.1021/acs.accounts.6b00517.
    |
  2. Roshal, A. D. Complexation of Flavonoids: Spectral Phenomena, Regioselectivity, Interplay with Charge and Proton Transfer. Chem. Rec. 2023, e202300249. https://doi.org/10.1002/tcr.202300249.
    |
  3. Dereka, B.; Svechkarev, D.; Doroshenko, A. Facile ultrasensitive monitoring of mercury ions in water by fluorescent ratiometric detection. Open Chemistry 2013, 11 (4), 584-593. https://doi.org/10.2478/s11532-012-0193-0.
  4. Wang, D.; Fan, X.; Sun, S.; Du, S.; Li, H.; Zhu, J.; Tang, Y.; Chang, M.; Xu, Y. Substituent effect: A new strategy to construct a ratiometric fluorescent probe for detection of Al3+ and imaging in vivo. Sensors and Actuators B: Chemical 2018, 264, 304-311. https://doi.org/10.1016/j.snb.2018.03.017.
  5. Zhang, Y.; Deng, Y.; Ji, N.; Zhang, J.; Fan, C.; Ding, T.; Cao, Z.; Li, Y.; Fang, Y. A rationally designed flavone-based ESIPT fluorescent chemodosimeter for highly selective recognition towards fluoride and its application in live-cell imaging. Dyes and Pigments 2019, 166, 473-479. https://doi.org/10.1016/j.dyepig.2019.03.066.
  6. Jin, X.; Sun, X.; Di, X.; Zhang, X.; Huang, H.; Liu, J.; Ji, P.; Zhu, H. Novel fluorescent ESIPT probe based on flavone for nitroxyl in aqueous solution and serum. Sensors and Actuators B: Chemical 2016, 224, 209-216. https://doi.org/10.1016/j.snb.2015.09.072.
  7. Liu, J.; Chen, X.; Zhang, Y.; Gao, G.; Zhang, X.; Hou, S.; Hou, Y. A novel 3-hydroxychromone fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism. New Journal of Chemistry 2018, 42 (15), 12918-12923. https://doi.org/10.1039/C8NJ01626G.
  8. Klymchenko, A. S.; Demchenko, A. P. Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Physical Chemistry Chemical Physics 2003, 5 (3), 461-468. https://doi.org/10.1039/B210352D.
  9. Voicescu, M.; Ionescu, S.; Gatea, F. Photophysical properties of some flavones probes in homogeneous media. J. Fluoresc. 2014, 24 (1), 75-83. https://doi.org/10.1007/s10895-013-1272-0.
    |
  10. Klymchenko, A. S.; Demchenko, A. P. Multiparametric probing of microenvironment with solvatochromic fluorescent dyes. Methods Enzymol. 2008, 450, 37-58. https://doi.org/10.1016/S0076-6879(08)03403-4.
    |
  11. M’Baye, G.; Martyloga, O. V.; Duportail, G.; Pivovarenko, V. G. 3-Hydroxy-4′-[di-(2-hydroxyethyl)amino]flavone as a new step in search of an ideal membrane ratiometric fluorescent probe. Journal of Photochemistry and Photobiology A: Chemistry 2006, 184 (1-2), 113-124. https://doi.org/10.1016/j.jphotochem.2006.03.037.
  12. Klymchenko, A. S.; Mely, Y. Fluorescent environment-sensitive dyes as reporters of biomolecular interactions. Prog. Mol. Biol. Transl. Sci. 2013, 113, 35-58. https://doi.org/10.1016/B978-0-12-386932-6.00002-8.
    |
  13. Sholokh, M.; Zamotaiev, O. M.; Das, R.; Postupalenko, V. Y.; Richert, L.; Dujardin, D.; Zaporozhets, O. A.; Pivovarenko, V. G.; Klymchenko, A. S.; Mely, Y. Fluorescent amino acid undergoing excited state intramolecular proton transfer for site-specific probing and imaging of peptide interactions. J. Phys. Chem. B. 2015, 119 (6), 2585-95. https://doi.org/10.1021/jp508748e.
    |
  14. Svechkarev, D.; Sadykov, M. R.; Bayles, K. W.; Mohs, A. M. Ratiometric Fluorescent Sensor Array as a Versatile Tool for Bacterial Pathogen Identification and Analysis. ACS Sens. 2018, 3 (3), 700-708. https://doi.org/10.1021/acssensors.8b00025.
    |
  15. Pahari, B.; Chakraborty, S.; Sengupta, P. K. Encapsulation of 3-hydroxyflavone in γ-cyclodextrin nanocavities: Excited state proton transfer fluorescence and molecular docking studies. Journal of Molecular Structure 2011, 1006 (1-3), 483-488. https://doi.org/10.1016/j.molstruc.2011.09.055.
  16. Klymchenko, A.S.; Stoeckel, H.; Takeda, K.; Mely, Y. Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential, J. Phys. Chem. B. 2006, 110, 13624–13632. https://doi.org/10.1021/jp062385z.
    |
  17. Demchenko, A. P. The concept of lambda-ratiometry in fluorescence sensing and imaging. J. Fluoresc. 2010, 20 (5), 1099-128. https://doi.org/10.1007/s10895-010-0644-y.
    |
  18. Tomin, V. I.; Demchenko, A. P.; Chou, P.-T. Thermodynamic vs. kinetic control of excited-state proton transfer reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 22, 1-18.  https://doi.org/10.1016/j.jphotochemrev.2014.09.005.
  19. Oyamada, T. A new general method for the synthesis of flavonol derivatives. Bulletin of The Chemical Society of Japan 1935, 10, 182-186. https://doi.org/10.1246/bcsj.10.182.
  20. Simiti, I.; Zaharia, V.; Mager, S.; Horn, M.; Köteles‐Popa, T. J. Heterocyclen, 67. Mitt.: Darstellung und Charakterisierung einiger 2-(2-Arylthiazol-4-yl)-3-hydroxy-chromone. Archiv der Pharmazie 1991, 324 (11), 913-915.  https://doi.org/10.1002/ardp.2503241117.
  21. Kotlyar, V. N.; Pushkarev, P. A.; Orlov, V. D.; Chernenko, V. N.; Desenko, S. M. Thiazole analogs of chalcones, capable of functionalization at the heterocyclic nucleus. Chemistry of Heterocyclic Compounds 2010, 46 (3), 334-341.  https://doi.org/10.1007/s10593-010-0509-y.
  22. Kolomoitsev, O. O.; Kotliar, V. M.; Tarasenko, D. O.; Buravov, O. V.; Doroshenko, A. O. 2,4-Disubstituted 4-(1,3-thiazol-5-yl)but-3-en-2-ones: synthetic approaches to and consequent chemical modification. Monatshefte für Chemie - Chemical Monthly 2020, 151 (5), 765-772. https://doi.org/10.1007/s00706-020-02612-7.
  23. Tarasenko, D. O.; Kotliar, V. M. The Synthesis of Novel 2-Hetarylthiazoles via the Stille Reaction. J. Org. Pharm. Chem. 2023, 21, 17-22.  https://doi.org/10.24959/ophcj.23.288204.
  24. Kuhnke, J.; Bohlmann, F. Enantioselektive Synthese von (−)-Lycoseron und verwandten Verbindungen. 1988, 1988 (8), 743-748.  https://doi.org/10.1002/JLAC.198819880806.
  25. Algar, J.; Flynn, J. P. A New Method for the Synthesis of Flavonols. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science 1934, 42, 1-8.
  26. Boys, M. L.; Schretzman, L. A.; Chandrakumar, N. S.; Tollefson, M. B.; Mohler, S. B.; Downs, V. L.; Penning, T. D.; Russell, M. A.; Wendt, J. A.; Chen, B. B.; Stenmark, H. G.; Wu, H.; Spangler, D. P.; Clare, M.; Desai, B. N.; Khanna, I. K.; Nguyen, M. N.; Duffin, T.; Engleman, V. W.; Finn, M. B.; Freeman, S. K.; Hanneke, M. L.; Keene, J. L.; Klover, J. A.; Nickols, G. A.; Nickols, M. A.; Steininger, C. N.; Westlin, M.; Westlin, W.; Yu, Y. X.; Wang, Y.; Dalton, C. R.; Norring, S. A. Convergent, parallel synthesis of a series of beta-substituted 1,2,4-oxadiazole butanoic acids as potent and selective alpha(v)beta3 receptor antagonists. Bioorg. Med. Chem. Lett. 2006, 16 (4), 839-44.  https://doi.org/10.1016/j.bmcl.2005.11.008.
    |

Downloads

Additional Files

Published

2023-12-05

How to Cite

(1)
Tarasenko, D. O.; Chumak, A. Y.; Kolomoitsev, O. O.; Kotliar, V. M.; Roshal, A. D. Synthesis of a New Series of Chromones Based on Formylthiazoles. J. Org. Pharm. Chem. 2023, 21, 3-10.

Issue

Section

Original Researches