Inhibition of Xanthine Oxidase by Pyrazolone Derivatives Bearing a 4-(Furan-2-yl)benzoic Acid Moiety

Authors

DOI:

https://doi.org/10.24959/ophcj.23.298726

Keywords:

xanthine oxidase, inhibition, pyrazolone, benzoic acid, molecular docking, molecular dynamics

Abstract

The pyrazolone-based 4-(furan-2-yl)benzoic acids have been synthesized and studied as xanthine oxidase inhibitors. This enzyme is one of the therapeutic targets for the treatment of hyperuricemia and related diseases. The compounds studied have found to exhibit low micromolar IC50 values relative to the enzyme in vitro, depending on substituents in position 3 of the pyrazolone ring. However, the inhibitory effects observed are reduced in the presence of bovine serum albumin or Tween-80. Among the pyrazolone derivatives synthesized, 4-(5-((3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)methyl)furan-2-yl)benzoic acid has been found to be the most potent inhibitor of xanthine oxidase. Kinetic results have shown that this compound is a mixed-type inhibitor with higher affinity to the free enzyme than to the enzyme-substrate complex. The results of the molecular docking and molecular dynamics show that the carboxylic group of the inhibitor can form a salt bridge with Arg880 and a hydrogen bond with Thr1010. These interactions can be key factors in the enzyme-inhibitor complex stabilization.

Supporting Agency

  • The work was founded by the National Academy of Sciences of Ukraine.

Downloads

Download data is not yet available.

References

  1. Chen, C.; Lü, J.-M.; Yao, Q. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview. Med. Sci. Monit. 2016, 22, 2501-2512.https://doi.org/10.12659/msm.899852.
    |
  2. Singh, A.; Singh, ; Sharma, A.; Kaur, K.; Chadha, R.; Bedi, P. M. S. Past, present and future of xanthine oxidase inhibitors: design strategies, structural and pharmacological insights, patents and clinical trials. RSC Med. Chem. 2023, 14, 2155-2191. https://doi.org/10.1039/D3MD00316G.
    |
  3. Šmelcerović, A.; Tomović, K.; Šmelcerović, Ž.; Petronijević, Ž.; Kocić, G.; Tomašič, T.; Jakopin, Ž.; Anderluh, M. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity. Eur. J. Med. Chem. 2017, 135, 491-516. https://doi.org/10.1016/j.ejmech.2017.04.031.
    |
  4. Kumar, V.; Tan, K.-P.; Wang, Y.-M.; Lin, S.-W.; Liang, P.-H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem. 2016, 24 (13), 3035-3042. https://doi.org/10.1016/j.bmc.2016.05.013.
    |
  5. Moreau, F.; Desroy, N.; Genevard, J. M.; Vongsouthi, V.; Gerusz, V.; Le Fralliec, G.; Oliveira, C.; Floquet, S.; Denis, A.; Escaich, S.; Wolf, K.; Busemann, M.; Aschenbrenner, A. Discovery of new Gram-negative antivirulence drugs: structure and properties of novel coli WaaC inhibitors. Bioorg. Med. Chem. Lett. 2008, 18 (14), 4022-4026. https://doi.org/10.1016/j.bmcl.2008.05.117.
    |
  6. Kumar, V.; Chang, C.-K.; Tan, K.-P.; Jung, Y.-S.; Chen, S.-H.; Cheng, Y.-S. E.; Liang, P.-H. Identification, synthesis, and evaluation of new neuraminidase inhibitors. Org. Lett. 2014, 16 (19), 5060-5063. https://doi.org/10.1021/ol502410x.
    |
  7. Knorr L. Knorr pyrazole synthesis. Justus Liebigs Ann. Chem. 1887, 238, 137.
  8. Racanè, L.; Tralić-Kulenović, V.; Boykin, D.; Karminski-Zamola, G. Synthesis of new cyano-substituted bis-benzothiazolyl arylfurans and arylthiophenes. Molecules 2003, 8 (3), 342-349. https://doi.org/10.3390/80300342.
  9. Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E. F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 2000, 97, 10723-10728. https://doi.org/10.1073/pnas.97.20.10723.
    |
  10. Maurice, R. E.; Camillo, A. G. Fluorescence quenching studies with proteins. Anal. Biochem. 1981, 114 (2), 199-227. https://doi.org/10.1016/0003-2697(81)90474-7.
    |
  11. Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455-461. https://doi.org/10.1002/jcc.21334.
    |
  12. Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Henin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kale, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153 (4), 044130. https://doi.org/10.1063/5.0014475.
    |
  13. Okamoto, K.; Eger, B.T.; Nishino, T.; Kondo, S.; Pai, E. F.; Nishino, T. An extremely potent inhibitor of xanthine oxidoreductase. J. Biol. Chem. 2002, 278 (3), 1848-1855. https://doi.org/10.1074/jbc.M208307200.
    |
  14. Metz, S.; Thiel, W. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism. J. Am. Chem. Soc. 2009, 131 (41), 14885-14902. https://doi.org/10.1021/ja9045394.
    |
  15. Ribeiro, P. M.; Fernandes, H. S.; Maia, L. B.; Sousa, S.; Moura, J. J. G. J.; Cerqueira, N. M. F. S. A. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg. Chem. Front. 2021, 8 (2), 405-416. https://doi.org/10.1039/D0QI01029D.
  16. Li, H.; Robertson, A. D.; Jensen, J. H. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005, 61 (4), 704-721. https://doi.org/10.1002/prot.20660.
    |
  17. Varshney, M.; Husain, A.; Parcha, V. Synthesis and characterization of 5-(substituted phenyl)-2-furfuraldehydes from substituted anilines. World J. Pharmacy Pharm. Sci. 2013, 2(4), 1802-1806.
  18. Kobzar, O. L.; Tatarchuk, A. V.; Mrug, G. P.; Bondarenko, S. P.; Demydchuk, B. A.; Frasinyuk, M. S.; Vovk, A. I. Carboxylated chalcones and related flavonoids as inhibitors of xanthine oxidase. Med. Chem. Res. 2023, 32 (8), 1804-1815. https://doi.org/10.1007/s00044-023-03109-8.
  19. Beiko, A.V.; Kobzar, O. L.; Kachaeva, M. V.; Pilyo, S. G.; Kozachenko, O. P.; Vovk, A. I. Rhodanine-based 4-(furan-2-yl)benzoic acids as inhibitors of xanthine oxidase. Ukr. Bioorg. Acta 2023, 18 (2), 39-46.
  20. Humphrey, W.; Dalke, A.; Schulten, K. VMD – visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5.
    |
  21. Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8 (9), 3314-3321. https://doi.org/10.1021/ct300418h.
    |

Downloads

Published

2023-12-09

How to Cite

(1)
Beiko, A. V.; Kobzar, O. L.; Kachaeva, M. V.; Pilyo, S. G.; Tanchuk, V. Y.; Vovk, A. I. Inhibition of Xanthine Oxidase by Pyrazolone Derivatives Bearing a 4-(Furan-2-yl)benzoic Acid Moiety. J. Org. Pharm. Chem. 2023, 21, 27-35.

Issue

Section

Original Researches