An Efficient Synthesis of PARP Inhibitors Containing a 4-Trifluoromethyl Substituted 3,6,7,7a-Tetrahydro- 1H-pyrrolo[3,4-d]pyrimidine-2,5-dione Scaffold

Authors

DOI:

https://doi.org/10.24959/ophcj.23.298727

Keywords:

Curtius rearrangement, heterocyclization, trifluoromethyl group, pyrrolo[3,4-d]pyrimidines, poly(ADP-ribose) polymerase inhibitors

Abstract

Poly(ADP-ribose) polymerases (PARPs) are key enzymes in the DNA repair pathway. Inhibitors of these enzymes belong to a new type of anticancer drugs that selectively kill cancer cells by targeting the homologous recombination genetic defects. This study presents a new synthetic approach to PARP inhibitors containing a 4-trifluoromethyl substituted 3,6,7,7a-tetrahydro-1H-pyrrolo[3,4-d]pyrimidine-2,5-dione scaffold. The method is based on a practical one-step cyclocondensation of 2-(2-oxo-1,2,3,4-tetrahydropyrimidin-4-yl)acetic acid derivatives via the Curtius rearrangement of the corresponding acyl azides formed in situ upon the treatment with diphenylphosphoryl azide. The resulting products have been found to possess a potent inhibitory effect on PARP-1 and PARP-2 isoforms of poly(ADP-ribose) polymerases. The structure–activity analysis has revealed that the N1-aryl substituent is crucial to the selectivity and high potency towards PARP-2, and that the p-fluorobenzyl group is the optimal group for the non-selective and potent PARP-1 and PARP-2 inhibition.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Bai, P. Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Mol. Cell 2015, 58 (6), 947 - 958. https://doi.org/10.1016/j.molcel.2015.01.034.
    |
  2. Mégnin-Chanet, F.; Bollet, M. A.; Hall, J. Targeting Poly(ADP-Ribose) Polymerase Activity for Cancer Therapy. Cell. Mol. Life Sci. 2010, 67 (21), 3649 - 3662. https://doi.org/10.1007/s00018-010-0490-8.
    |
  3. Wang, Y.-Q.; Wang, P.-Y.; Wang, Y.-T.; Yang, G.-F.; Zhang, A.; Miao, Z.-H. An Update on Poly(ADP-Ribose)Polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy. J. Med. Chem. 2016, 59 (21), 9575 - 9598. https://doi.org/10.1021/acs.jmedchem.6b00055.
    |
  4. Lord, C. J.; Ashworth, A. PARP Inhibitors: Synthetic Lethality in the Clinic. Science 2017, 355 (6330), 1152 - 1158. https://doi.org/10.1126/science.aam7344.
    |
  5. Steffen, J. D.; Brody, J. R.; Armen, R. S.; Pascal, J. M. Structural Implications for Selective Targeting of PARPs. Front. Oncol. 2013, 3. https://doi.org/10.3389/fonc.2013.00301.
    |
  6. Zuo, X.; Zhao, H.; Li, D. Systematic Inhibitor Selectivity between PARP1 and PARP2 Enzymes: Molecular Implications for Ovarian Cancer Personalized Therapy. J. Mol. Recognit. 2021, 34 (7), 1 - 9. https://doi.org/10.1002/jmr.2891.
    |
  7. Papeo, G.; Posteri, H.; Borghi, D.; Busel, A. A.; Caprera, F.; Casale, E.; Ciomei, M.; Cirla, A.; Corti, E.; D’Anello, M.; Fasolini, M.; Forte, B.; Galvani, A.; Isacchi, A.; Khvat, A.; Krasavin, M. Y.; Lupi, R.; Orsini, P.; Perego, R.; Pesenti, E.; Pezzetta, D.; Rainoldi, S.; Riccardi-Sirtori, F.; Scolaro, A.; Sola, F.; Zuccotto, F.; Felder, E. R.; Donati, D.; Montagnoli, A. Discovery of 2-[1-(4,4-Difluorocyclohexyl)Piperidin-4-yl]-6-Fluoro-3-Oxo-2,3-Dihydro-1H-Isoindole-4-Carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy. J. Med. Chem. 2015, 58 (17), 6875 - 6898. https://doi.org/10.1021/acs.jmedchem.5b00680.
    |
  8. Zhao, H.; Ji, M.; Cui, G.; Zhou, J.; Lai, F.; Chen, X.; Xu, B. Discovery of Novel Quinazoline-2,4(1H,3H)-Dione Derivatives as Potent PARP-2 Selective Inhibitors. Bioorg. Med. Chem. 2017, 25 (15), 4045 - 4054. https://doi.org/10.1016/j.bmc.2017.05.052.
    |
  9. Lukianov, O.; Tkachuk, V.; Shishkina, S.; Lachmann, L.; Vadzyuk, O.; Borysko, P.; Kovalskyy, D.; Gillaizeau, I.; Sukach, V. Hydroaminoalkyl Functionalization of Pyrimidin‐2(1H)‐ones by Visible Light Organophotocatalysis: A Radical Approach to Biginelli‐Type Dihydropyrimidines. Adv. Synth. Catal. 2023, 365 (20), 3484 - 3492. https://doi.org/10.1002/adsc.202300781.
  10. Tkachuk, V. M.; Sukach, V. A.; Kovalchuk, K. V.; Vovk, M. V.; Nenajdenko, V. G. Development of an Efficient Route to CF3-Substituted Pyrrolopyrimidines through Understanding the Competition between Michael and Aza-Henry Reactions. Org. Biomol. Chem. 2015, 13 (5), 1420 - 1428. https://doi.org/10.1039/C4OB02233E.
    |
  11. Melnykov, S. V; Pataman, A. S.; Dmytriv, Y. V; Shishkina, S. V; Vovk, M. V; Sukach, V. A. Regioselective Decarboxylative Addition of Malonic Acid and Its Mono(Thio)Esters to 4-Trifluoromethylpyrimidin-2(1H)-Ones. Beilstein J. Org. Chem. 2017, 13, 2617 - 2625. https://doi.org/10.3762/bjoc.13.259.
    |

Downloads

Published

2023-11-26

How to Cite

(1)
Lukianov, O. O.; Tkachuk, V. M.; Stepanova, D. S.; Gillaizeau, I.; Sukach, V. A. An Efficient Synthesis of PARP Inhibitors Containing a 4-Trifluoromethyl Substituted 3,6,7,7a-Tetrahydro- 1H-pyrrolo[3,4-d]pyrimidine-2,5-Dione Scaffold. J. Org. Pharm. Chem. 2023, 21, 18-26.

Issue

Section

Original Researches