Nature-Inspired Tetrahydropentalene Building Blocks: Scalable Synthesis for Medicinal Chemistry Needs

Authors

DOI:

https://doi.org/10.24959/ophcj.23.299612

Keywords:

tetrahydropentalene, building blocks, medicinal chemistry, multigram synthesis

Abstract

Inspired by the bioactivity of natural compounds with a bicyclo[3.3.0]octane core, the study focuses on developing tetrahydropentalene-2,5-dione (2,5-THP-dione) derivatives as potential building blocks for the use in medicinal chemistry. Using the commercially available 2,5-THP-dione, a number of alkylated derivatives and a monofunctional ketone were synthesized. Using optimized protocols for synthesis, target compounds were obtained with high yields on a multigram scale. These compounds are promising derivatives for further chemical derivatization and therapeutic use, and thus highlight the value of 2,5-THP-dione in creating complex molecular structures for drug discovery, as well as the importance of tetrahydropentalene derivatives as valuable building blocks in synthetic chemistry.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Deimling, M.; Zens, A.; Park, N.; Hess, C.; Klenk, S.; Dilruba, Z.; Baro, A.; Laschat, S. Adventures and Detours in the Synthesis of Hydropentalenes. Synlett 2021, 32 (02), 119-139. https://doi.org/10.1055/s-0040-1707226.
  2. Cho, T. P.; Gang, L. Z.; Long, Y. F.; Yang, W.; Qian, W.; Lei, Z.; Jing, L. J.; Ying, F.; Ke, Y. P.; Ying, L.; Jun, F. Synthesis and biological evaluation of bicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett. 2010, 20 (12), 3521-3525. https://doi.org/10.1016/j.bmcl.2010.04.138.
    |
  3. Mitcheltree, M. J.; Li, D.; Achab, A.; Beard, A.; Chakravarthy, K.; Cheng, M.; Cho, H.; Eangoor, P.; Fan, P.; Gathiaka, S.; Kim, H.-Y.; Lesburg, C. A.; Lyons, T. W.; Martinot, T. A.; Miller, J. R.; McMinn, S.; O’Neil, J.; Palani, A.; Palte, R. L.; Saurí, J.; Sloman, D. L.; Zhang, H.; Cumming, J. N.; Fischer, C. Discovery and Optimization of Rationally Designed Bicyclic Inhibitors of Human Arginase to Enhance Cancer Immunotherapy. ACS Med. Chem. Lett. 2020, 11 (4), 582-588. https://doi.org/10.1021/acsmedchemlett.0c00058.
    |
  4. Anderl, T.; Emo, M.; Laschat, S.; Baro, A.; Frey, W. Synthesis of Functionalized Pentalenes via Carbonyl-Ene Reaction and Enzymatic Kinetic Resolution. Synthesis 2008, 2008 (10), 1619-1627. https://doi.org/10.1055/s-2008-1067012.
  5. Kashima, H.; Kawashima, T.; Wakasugi, D.; Satoh, T. A method for synthesis of bicyclo[3.3.0]oct-1-en-3-ones from cyclobutanones with one-carbon ring expansion and its application to a formal synthesis of racemic 1-desoxyhypnophilin. Tetrahedron 2007, 63 (19), 3953-3963. https://doi.org/10.1016/j.tet.2007.03.019.
  6. Smyrnov, O. K.; Melnykov, K. P.; Rusanov, E. B.; Suikov, S. Y.; Pashenko, O. E.; Fokin, A. A.; Volochnyuk, D. M.; Ryabukhin, S. V. Multigram Synthesis of Dimethyl Stellane-1,5-Dicarboxylate as a Key Precursor for ortho-Benzene Mimics. Chem. Eur. J. 2023, 29 (70), e202302454. https://doi.org/10.1002/chem.202302454.
    |
  7. Smyrnov, O.; Melnykov, K.; Pashenko, O.; Volochnyuk, D.; Ryabukhin, S. Stellane at the Forefront: Derivatization and Reactivity Studies of a Promising Saturated Bioisostere of ortho‐Substituted Benzenes. ChemRxiv 2024. https://doi.org/10.26434/chemrxiv-2024-rlf5q.
  8. Cadieux, J. A.; Buller, D. J.; Wilson, P. D. Versatile Route to centro-Substituted Triquinacene Derivatives:  Synthesis of 10-Phenyltriquinacene. Org. Lett. 2003, 5 (21), 3983-3986. https://doi.org/10.1021/ol035546f.
    |
  9. Piers, E.; Karunaratne, V. Bifunctional reagents in organic synthesis. Total syntheses of the sesquiterpenoids (±)-pentalenene and (±)-9-epi-pentalenene. Can. J. Chem. 1989, 67 (1), 160-164. https://doi.org/10.1139/v89-026.
  10. Piers, E.; Karunaratne, V. Methylenecyclopentane annulation: a synthesis of the sesquiterpenoid (±)-pentalenene. J. Chem. Soc., Chem. Commun. 1984, 15, 959-960. https://doi.org/10.1039/C39840000959.
  11. Pendiukh, V. V.; Yakovleva, H. V.; Stadniy, I. A.; Pashenko, A. E.; Rusanov, E. B.; Grabovaya, N. V.; Kolotilov, S. V.; Rozhenko, A. B.; Ryabukhin, S. V.; Volochnyuk, D. M. Practical Synthetic Method for Amino Acid-Derived Diazoketones Shelf-Stable Reagents for Organic Synthesis. Org. Process Res. Dev. 2024, 28 (1), 165-176. https://doi.org/10.1021/acs.oprd.3c00230.
  12. Leonard, J.; Bennett, L.; Mahmood, A. Synthesis of hirsutene — An approach involving asymmetric epoxide fragmentation. Tetrahedron Lett. 1999, 40 (20), 3965-3968. https://doi.org/10.1016/S0040-4039(99)00622-X.
  13. Wolff, L. Chemischen Institut der Universität Jena: Methode zum Ersatz des Sauerstoffatoms der Ketone und Aldehyde durch Wasserstoff. [Erste Abhandlung.]. Justus Liebigs Ann. Chem. 1912, 394 (1), 86-108. https://doi.org/10.1002/jlac.19123940107.
  14. Bodenschatz, K.; Stöckl, J.; Winterer, M.; Schobert, R. A synthetic approach to 5/5/6-polycyclic tetramate macrolactams of the discodermide type. Tetrahedron 2022, 104, 132113. https://doi.org/10.1016/j.tet.2021.132113.

Downloads

Additional Files

Published

2023-12-10

How to Cite

(1)
Smyrnov, O. K.; Pashenko, O. Y. Nature-Inspired Tetrahydropentalene Building Blocks: Scalable Synthesis for Medicinal Chemistry Needs. J. Org. Pharm. Chem. 2023, 21, 43-50.

Issue

Section

Advanced Researches