5-Trifluoromethoxy-substituted Nicotinic Acid, Nicotinamide and Related Compounds





nicotinic acid, nicotinamide, trifluoromethoxy group, antimony trifluoride, fluorination


A practical and convenient method for synthesizing nicotinic acid and nicotinamide with the trifluoromethoxy group in position 5 of the ring has been developed. A series of related compounds, for example, nicotinic aldehyde and nicotinic alcohol, have been synthesized. It has been shown that 3-bromo-5-trifluoromethoxypyridine is a convenient and efficient synthon for palladium-catalyzed coupling reactions. The trifluoromethoxy group has been found to be remarkably stable against hydroiodic acid in contrast to the methoxy group.

Supporting Agency

  • The authors received no specific funding for this work.


Download data is not yet available.


  1. Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5 (19), 10633–10640. https://doi.org/10.1021/acsomega.0c00830.
  2. Davydova, Yu. A.; Sokolenko, T. M.; Yahupolskyi, Yu. L. Five-membered heterocyclic compound with fluoroalkoxy substituents. Ukrainian Chemistry Journal 2015, 81 (7-8), 3-24 [in Ukrainian].
  3. Kolomeitsev, A. ; Vorobyev, M.; Gillandt, H. Versatile application of trifluoromethyl triflate. Tetrahedron Lett. 2008, 8 (3), 449-454. https://doi.org/10.1016/j.tetlet.2007.11.105.
  4. Yagupolskii, L. M. Synthesis of derivatives of phenyl trifluoromethyl ethers. Dokl. Acad. Nauk SSSR 1955, 105, 100–102. [Chem. Abstr. 1956, 50, 11270b]
  5. Fuss, A.; Koch, V. Chemistry of 3-Hydroxypyridine Part 3: Synthesis of Substituted 3-[Fluoro(chloro)alkoxy]pyridines from Halo- or Amino-3-hydroxypyridines. Synthesis 1990, 7, 604-608. https://doi.org/10.1055/s-1990-26956.
  6. Manteau, B.; Genix, P.; Brelot, L.; Vors, J.-P.; Pazenok, S.; Giornal, F.; Leuenberger, C.; Leroux, F. A General Approach to (Trifluoromethoxy)-pyridines: First X-ray Structure Determinations and Quantum Chemistry Studies. Eur. J. Org. Chem. 2010, 31, 6043–6066. https://doi.org/10.1002/ejoc.201000958.
  7. Sokolenko, T.M.; Yagupolskii, Y.L. Trifluoromethoxypyrazines: Preparation and Properties. Molecules 2020, 25, 2226. https://doi.org/10.3390/molecules25092226
  8. Sokolenko, T. M.; Davydova, Y. A.; Yagupolskii, Y. Efficient synthesis of 5′-fluoroalkoxythiazoles via α-bromo-α-fluoroalkoxyacetophenones Hantzsch type cyclization with thioureas or thioamides. J. Fluorine Chem. 2012, 136, 20–25. https://doi.org/10.1016/j.jfluchem.2012.01.005.
  9. Davydova, A.; Sokolenko, T. M.; Yagupolskii, Y. L. Polyfluoro- and perfluoroalkoxyenaminones in syntheses of nitrogen containing heterocycles. J. Fluorine Chem. 2014, 157, 58–62. https://doi.org/10.1016/j.jfluchem.2013.11.007.
  10. Tlili, A.; Toulgoat, F.; Billard, T. Synthetic Approaches to Trifluoromethoxy-Substituted Compounds. Angew. Chem. Int. Ed. 2016, 55, 2–12. https://doi.org/10.1002/anie.201603697.
  11. Yang, Y.-M.; Yao, J.-F.; Yan, W.; Luo, Z.; Tang, Z.-Y. Silver-Mediated Trifluoromethoxylation of (Hetero)aryldiazonium Tetrafluoroborates. Org. Lett. 2019, 21 (19), 8003-8007. https://doi.org/10.1021/acs.orglett.9b03000.
  12. Wang, Z. Zeisel Determination. In Comprehensive Organic Name Reactions and Reagents; Wang, Z., Ed. John Wiley & Sons, 2010; pp 3115-3118. https://doi.org/10.1002/9780470638859.conrr689.
  13. Morgentin, R.; Jung, F.; Lamorlette, M.; Maudet, M.; Ménard, M. Plé, P.; Pasquet, G.; Renaud, F. An efficient large-scale synthesis of alkyl 5-hydroxy-pyridin- and pyrimidin-2-yl acetate. Tetrahedron 2009, 65 (4), 757-764. https://doi.org/10.1016/j.tet.2008.11.064.




How to Cite

Sokolenko, T. M.; Yagupolskii, Y. L. 5-Trifluoromethoxy-Substituted Nicotinic Acid, Nicotinamide and Related Compounds. J. Org. Pharm. Chem. 2024, 22, 22-30.



Original Researches