Immunotherapy of Diseases and Nanotechnology: Current State and Prospects

Authors

  • Oleksandr F. Piminov Institute for Advanced Training of Pharmacy Specialists of the National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine https://orcid.org/0000-0003-4369-907X
  • Rita V. Sahaidak-Nikitiuk Institute for Advanced Training of Pharmacy Specialists of the National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine https://orcid.org/0000-0002-9337-7741
  • Anna I. Kvitchata Institute for Advanced Training of Pharmacy Specialists of the National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine https://orcid.org/0000-0001-8093-2569
  • Svitlana M. Rolik-Attia Institute for Advanced Training of Pharmacy Specialists of the National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine https://orcid.org/0000-0002-0299-5895

DOI:

https://doi.org/10.24959/ophcj.24.304776

Keywords:

nanosystem, nanotechnology, nanoparticle, nanomaterials, autoimmune disease, disease treatment

Abstract

Nanotechnology can be used to treat a number of diseases, which are currently the main cause of death in the world, and allow to achieve the desired therapeutic effect for the patient. This mini-review focuses on the analysis of scientific literary sources dealing with the application of nanotechnology in the immunotherapy of diseases and covers the period from 2016 to 2022. In particular, it provides an overview of recently discovered nanotechnologies (including immunomodulatory nanosystems) used for the prevention and treatment of various diseases, including cancer, infectious, inflammatory, and autoimmune diseases. The review also discusses the role of nanosystems in cancer immunotherapy. Additional attention is paid to nanomaterials with new structures, properties, and functions, which are used in the modern practice of treating viral and bacterial infections. A part of the paper is devoted to nanoparticles that enhance the effect of immunosuppressive cells in the treatment of inflammatory and autoimmune diseases. The analysis performed clearly demonstrates the relevance of nanotechnologies for the use in the immunotherapy of diseases. We hope it will allow researchers to identify new areas for using nanoparticles in the treatment of diseases of various etiologies.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Pearson, R. M.; Casey, L. M.; Hughes, K. R.; Miller, S. D.; Shea, L. D. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv. Drug Deliv. Rev. 2017, 114, 240-255. https://doi.org/10.1016/j.addr.2017.04.005.
    |
  2. Tazaki, T.; Tabata, K.; Ainai, A.; Ohara, Y.; Kobayashi, S.; Ninomiya, T.; Orba, Y.; Mitomo, H.; Nakano, T.; Hasegawa, H.; Ijiro, K.; Sawa, H.; Suzuki, T.; Niikura, K. Shape-dependent adjuvanticity of nanoparticle-conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Adv. 2018, 8 (30), 16527-16536. https://doi.org/1039/C8RA01690A.
    |
  3. Kim, H.; Niu L.; Larson, P.; Kucaba, T. A.; Murphy, K. A.; James, B. R.; Ferguson, D. M.; Griffith, T. S.; Panyam, J. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 2018, 164, 38-53. https://doi.org/10.1016/j.biomaterials.2018.02.034.
    |
  4. Chen, J.; Ding, J.; Xu, W.; Sun, T.; Xiao, H.; Zhuang, X.; Chen, X. Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Lett. 2017, 17 (7), 4526– https://doi.org/10.1021/acs.nanolett.7b02129.
    |
  5. Xu, W.; Ding, J.; Chen, X. Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. Biomacromolecules 2017, 18 (10), 3291– https://doi.org/10.1021/acs.biomac.7b00950.
    |
  6. Zhang, Y.; Cai, L.; Li, D.; Lao, Y.-H.; Liu, D.; Li, M.; Ding, J.; Chen, X. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res. 2018, 11 (9), 4806-4822. https://doi.org/1007/s12274-018-2066-0.
  7. Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 2019, 7 (5), 709-729. https://doi.org/10.1039/c8tb02491j.
    |
  8. Musetti, S.; Huang, L. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS Nano 2018, 12 (12), 11740– https://doi.org/10.1021/acsnano.8b05893.
  9. Yang, H.-W.; Ye, L.; Guo, X. D.; Yang, C.; Compans, R. W.; Prausnitz, M. R. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch. Adv. Healthcare Mater. 2017, 6 (1), 1600750. https://doi.org/10.1002/adhm.201600750.
    |
  10. Li, S.; Feng, X.; Wang, J.; He, L.; Wang, C.; Ding, J.; Chen, X. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res. 2018, 11 (11), 5769-5786. https://doi.org/10.1007/s12274-018-2124-7.
  11. Xiao, H.; Yan, Lesan; Dempsey, E. M.; Song, W.; Qi, R.; Li, W.; Huang, Y.; Jing, X.; Zhou, D.; Ding, J.; Chen, X. Recent progress in polymer-based platinum drug delivery systems. Prog. Polym. Sci. 2018, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004.
  12. Wang, Y.; Jiang, Z.; Xu, W.; Yang, Y.; Zhuang, X.; Ding, J.; Chen, X. Chiral Polypeptide Thermogels Induce Controlled Inflammatory Response as Potential Immunoadjuvants. ACS Appl. Mater. Interfaces 2019, 11 (9), 8725– https://doi.org/10.1021/acsami.9b01872.
    |
  13. Fan, Y.; Kuai, R.; Xu, Y.; Ochyl, L. J.; Irvine, D. J.; Moon, J. J. Immunogenic Cell Death Amplified by Co-localized Adjuvant Delivery for Cancer Immunotherapy. Nano Lett. 2017, 17 (12), 7387– https://doi.org/10.1021/acs.nanolett.7b03218.
    |
  14. Song X.; Xu J.; Liang C.; Chao Y.; Jin Q.; Wang C.; Chen M.; Liu Z. Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of H2O2 and Catalase for Enhanced Radio-Immunotherapy of Cancer. Nano Lett. 2018, 18 (10), 6360– https://doi.org/10.1021/acs.nanolett.8b02720.
    |
  15. He, L.; Xu, W.; Wang, X.; Wang, C.; Ding, J.; Chen, X. Polymer micro/nanocarrier-assisted synergistic chemohormonal therapy for prostate cancer. Biomater. Sci. 2018, 6, 1433–1444. https://doi.org/10.1039/C8BM00190A.
    |
  16. Wang, J.; Xu, W.; Li, S.; Qiu, H.; Li, Z.; Wang, C.; Wang X., Ding, J. Polylactide-Cholesterol Stereocomplex Micelle Encapsulating Chemotherapeutic Agent for Improved Antitumor Efficacy and Safety. J. Biomed. Nanotechnol. 2018, 14 (12), 2102–2113. https://doi.org/10.1166/jbn.2018.2624.
    |
  17. Guo, H.; Li, F.; Xu, W.; Chen, J.; Hou, Y.; Wang, C.; Ding, J.; Chen, X. Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. Adv. Sci. 2018, 5 (6), 1800004. https://doi.org/10.1002/advs.201800004.
    |
  18. Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. Adv. Sci. 2018, 5 (5), 1700821. https://doi.org/10.1002/advs.201700821.
    |
  19. Luo, L.; Zhu, C.; Yin, H.; Jiang, M.; Zhang, J.; Qin, B.; Luo, Z.; Yuan, X.; Yang, J.; Li, W.; Du, Y.; You, J. Laser Immunotherapy in Combination with Perdurable PD-1 Blocking for the Treatment of Metastatic Tumors. ACS Nano 2018, 12 (8), 7647– https://doi.org/10.1021/acsnano.8b00204.
    |
  20. Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9 (1), 1074. https://doi.org/10.1038/s41467-018-03473-9.
    |
  21. Wang, C.; Ye, Y.; Hu, Q.; Bellotti, A.; Gu, Z. Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Adv. Mater.. 2017, 29 (29). https://doi.org/10.1002/adma.201606036.
    |
  22. Stead, S. O.; Kireta, S.; McInnes, S. J. P.; Kette, F. D.; Sivanathan, K. N.; Kim, J.; Cueto-Diaz, E. J.; Cunin, F.; Durand, J. O.; Drogemuller, C. J.; Carroll, R. P.; Voelcker, N. H.; Coates, P. T. Murine and Non-Human Primate Dendritic Cell Targeting Nanoparticles for in Vivo Generation of Regulatory T-Cells. ACS Nano 2018, 12 (7), 6637– https://doi.org/10.1021/acsnano.8b01625.
    |
  23. Yang, R.; Xu, J.; Xu, L.; Sun, X.; Chen, Q.; Zhao, Y.; Peng, R.; Liu, Z. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano 2018, 12 (6), 5121– https://doi.org/10.1021/acsnano.7b09041.
    |
  24. Yang, M.; Ding, J.; Feng, X.; Chang, F.; Wang, Y.; Gao, Z.; Zhuang, X.; Chen, X. Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug. Theranostics 2017, 7 (1), 97-105. https://doi.org/7150/thno.16844.
    |
  25. Bahmani, B.; Uehara, M.; Jiang, L.; Ordikhani, F.; Banouni, N.; Ichimura, T.; Solhjou, Z.; Furtmüller, G. J.; Brandacher, G.; Alvarez, D.; von Andrian, U. H.; Uchimura, K.; Xu Q.; Vohra, I.; Yilmam, O. A.; Haik, Y.; Azzi, J.; Kasinath, V.; Bromberg, J. S.; McGrath, M. M.; Abdi, R. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J. Clin. Invest. 2018, 128 (11), 4770–4786. https://doi.org/10.1172/JCI120923.
  26. Ou, W.; Thapa, R. K.; Jiang, L.; Soe, Z. C.; Gautam, M.; Chang, J. H.; Jeong, J. H.; Ku, S. K.; Choi, H. G.; Yong, C. S.; Kim, J. O. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J. Controlled Release 2018, 281, 84–96. https://doi.org/10.1016/j.jconrel.2018.05.018.
    |
  27. Heo, R.; You, D. G.; Um, W.; Choi, K. Y.; Jeon, S.; Park, J. S.; Choi, Y.; Kwon, S.; Kim, K.; Kwon, I. C.; Jo, D. G.; Kang, Y. M.; Park, J. H. Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials 2017, 131, 15– https://doi.org/10.1016/j.biomaterials.2017.03.044.
    |
  28. Jiang, Z.; Chen, J.; Cui, L.; Zhuang, X.; Ding, J.; Chen, X. Advances in Stimuli-Responsive Polypeptide Nanogels. Small Methods 2018, 2 (3), 1700307 https://doi.org/10.1002/smtd.201700307.
  29. Ding J.; Feng X.; Jiang Z.; Xu W.; Guo H.; Zhuang X.; Chen X. Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules 2019, 20 (12), 4258– https://doi.org/10.1021/acs.biomac.9b01263.
    |
  30. Li D.; Han J.; Ding J.; Chen L.; Chen X. Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. Carbohydr. Polym. 2017, 161, 33–41. https://doi.org/10.1016/j.carbpol.2016.12.070.
    |
  31. Feng, X.; Li, D.; Han, J.; Zhuang, X.; Ding, J. Schiff base bond-linked polysaccharide–doxorubicin conjugate for upregulated cancer therapy. Materials Science and Engineering: C 2017, 76, 1121-1128. https://doi.org/10.1016/j.msec.2017.03.201.
    |
  32. Zhang, C.; Shi, G.; Zhang, J.; Song, H.; Niu, J.; Shi, S.; Huang, P.; Wang, Y.; Wang, W.; Li, C.; Kong, D. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J. Controlled Release 2017, 256, 170–181. https://doi.org/10.1016/j.jconrel.2017.04.020.
    |
  33. Cheng, K.; Ding, Y.; Zhao, Y.; Ye, S.; Zhao, X.; Zhang, Y.; Ji, T.; Wu, H.; Wang, B.; Anderson, G. J.; Ren, L.; Nie, G. Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy. Nano Lett. 2018, 18 (5), 3250– https://doi.org/10.1021/acs.nanolett.8b01071.
    |
  34. Li, D.; Zhang, G.; Xu, W.; Wang, J.; Wang, Y.; Qiu, L.; Ding, J.; Yang, X. Investigating the Effect of Chemical Structure of Semiconducting Polymer Nanoparticle on Photothermal Therapy and Photoacoustic Imaging. Theranostics 2017, 7 (16), 4029– https://doi.org/10.7150/thno.19538.
    |
  35. Madan, R. A.; Turkbey, B.; Lepone, L. M.; Donahue, R. N.; Grenga, I.; Borofsky, S.; Pinto, P. A.; Citrin, D. E.; Kaushal, A.; Krauze, A. V.; McMahon, S.; Rauchhorst, M.; Couvillon, A.; Falk, M. H.; Eggleton, P.; Choyke, P. L.; Dahut, W. L.; Schlom, J.; Gulley, J. Changes in multiparametric prostate MRI and immune subsets in patients (Pts) receiving neoadjuvant immunotherapy and androgen deprivation therapy (ADT) prior to radiation. J. Clin. Oncol. 2017, 35 (6_suppl), 30-30. https://doi.org/10.1200/JCO.2017.35.6_suppl.30.
  36. Oyen, D.; Torres, J. L.; Wille-Reece, U.; Ockenhouse, C. F.; Emerling, D.; Glanville, J.; Volkmuth, W.; Flores-Garcia, Y.; Zavala, F.; Ward, A. B.; King, C. R.; Wilson, I. A. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (48), E10438-E10445. https://doi.org/10.1073/pnas.1715812114.
    |
  37. Witte, D.; Cunliffe, N. A.; Turner, A. M.; Ngulube, E.; Ofori-Anyinam, O.; Vekemans, J.; Chimpeni, Ph.; Lievens, M.; Wilson, T. P.; Njiram’madzi, J.; Mendoza, Y. G.; Leach, A. Safety and Immunogenicity of Seven Dosing Regimens of the Candidate RTS,S/AS01E Malaria Vaccine Integrated Within an Expanded Program on Immunization Regimen. A Phase II, Single-Center, Open, Controlled Trial in Infants in Malawi. The Pediatric Infectious Disease Journal 2018, 37 (5), 483–491. https://doi.org/1097/INF.0000000000001937.
    |
  38. Dang, B. N.; Kwon, T. K.; Lee, S.; Jeong, J. H.; Yook, S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J. Controlled Release 2024, 365, 773–800. https://doi.org/10.1016/j.jconrel.2023.12.007.
    |
  39. Feng, B.; Zhou, F.; Hou, B.; Wang, D.; Wang, T.; Fu, Y.; Ma, Y.; Yu, H.; Li, Y. Binary Cooperative Prodrug Nanoparticles Improve Immunotherapy by Synergistically Modulating Immune Tumor Microenvironment. Adv. Mater. 2018, 30 (38), e1803001. https://doi.org/10.1002/adma.201803001.
    |
  40. Fesnak, A. D.; June, C. H.; Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 2016, 16 (9), 566–581. https://doi.org/10.1038/nrc.2016.97.
    |
  41. Zhang, Q.; Wei, W.; Wang, P.; Zuo, L.; Li, F.; Xu, J.; Xi, X.; Gao, X.; Ma, G.; Xie, H. Y. Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy. ACS Nano 2017, 11 (11), 10724– https://doi.org/10.1021/acsnano.7b04955.
    |
  42. Chiang, C. S.; Lin, Y. J.; Lee, R.; Lai, Y. H.; Cheng, H. W.; Hsieh, C. H.; Shyu, W. C.; Chen, S. Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol. 2018, 13 (8), 746–754. https://doi.org/10.1038/s41565-018-0146-7.
    |
  43. Sun, Q.; Zhou, Z.; Qiu, N.; Shen, Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv. Mater. 2017, 29 (14). https://doi.org/10.1002/adma.201606628.
    |
  44. Qiu, F.; Becker, K. W.; Knight, F. C.; Baljon, J. J.; Sevimli, S.; Shae, D.; Gilchuk P.; Joyce, S.; Wilson, J. T. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials 2018, 182, 82– https://doi.org/10.1016/j.biomaterials.2018.07.052.
    |
  45. Jabulowsky, R. A.; Loquai, C.; Derhovanessian, E.; Grabbe, S.; Türeci, Ö.; Sahin, U. A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles encoding shared tumor antigens for immunotherapy of malignant melanoma. Ann. Oncol. 2018, 29, VIII439. https://doi.org/10.1093/annonc/mdy288.109.
  46. Zhao, J.; Yang, H.; Li, J.; Wang, Y.; Wang, X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Scientific reports 2017, 7 (1), 18014. https://doi.org/10.1038/s41598-017-16948-4.
    |
  47. Cohen, A. D.; Lendvai, N.; Nataraj, S.; Imai, N.; Jungbluth, A. A.; Tsakos, I.; Rahman, A.; Mei, A. H.; Singh, H.; Zarychta, K.; Kim-Schulze, S.; Park, A.; Venhaus, R.; Alpaugh, K.; Gnjatic, S.; Cho, H. J. Autologous Lymphocyte Infusion Supports Tumor Antigen Vaccine-Induced Immunity in Autologous Stem Cell Transplant for Multiple Myeloma. Cancer Immunol. Res. 2019, 7 (4), 658– https://doi.org/10.1158/2326-6066.CIR-18-0198.
    |
  48. Dreno B.; Thompson, J. F.; Smithers, B. M.; Santinami, M.; Jouary, T.; Gutzmer, R.; Levchenko, E.; Rutkowski, P.; Grob, J. J.; Korovin, S.; Drucis, K.; Grange, F.; Machet, L.; Hersey, P.; Krajsova, I.; Testori, A.; Conry, R.; Guillot, B.; Kruit, W. H. J.; Demidov, L.; Thompson, J. A.; Bondarenko, I.; Jaroszek, J.; Puig, S.; Cinat, G.; Hauschild, A.; Goeman, J. J.; van Houwelingen, H. C.; Ulloa-Montoya, F.; Callegaro, A.; Dizier, B.; Spiessens, B.; Debois, M.; Brichard, V. G.; Louahed, J.; Therasse, P.; Debruyne, C.; Kirkwood, J. M. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2018, 19 (7), 916– https://doi.org/10.1016/S1470-2045(18)30254-7.
  49. McQuade, J. L.; Homsi, J.; Torres-Cabala, C. A.; Bassett, R.; Popuri, R. M.; James, M. L.; Vence, L. M.; Hwu, W. J. A phase II trial of recombinant MAGE-A3 protein with immunostimulant AS15 in combination with high-dose Interleukin-2 (HDIL2) induction therapy in metastatic melanoma. BMC Cancer 2018, 18 (1), 1274. https://doi.org/1186/s12885-018-5193-9.
    |
  50. Kosmides, A. K.; Meyer, R. A.; Hickey, J. W.; Aje, K.; Cheung, K. N.; Green, J. J.; Schneck, J. P. Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials 2017, 118, 16–26. https://doi.org/10.1016/j.biomaterials.2016.11.038.
    |
  51. Min, Y.; Roche, K. C.; Tian, S.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S.; Herring, L. E.; Zhang, L.; Zhang, T.; DeSimone, J. M.; Tepper, J. E.; Vincent, B. G.; Serody, J. S.; Wang, A. Z. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12 (9), 877–882. https://doi.org/10.1038/nnano.2017.113.
    |
  52. Zheng, D. W.; Chen, J. L.; Zhu, J. Y.; Rong, L.; Li, B.; Lei, Q.; Fan, J. X.; Zou, M. Z.; Li, C.; Cheng, S. X.; Xu, Z.; Zhang, X. Z. Highly Integrated Nano-Platform for Breaking the Barrier between Chemotherapy and Immunotherapy. Nano Lett. 2016, 16 (7), 4341–434 https://doi.org/10.1021/acs.nanolett.6b01432.
    |
  53. Velpurisiva, P.; Gad, A.; Piel, B.; Jadia, R.; Rai, P. Nanoparticle Design Strategies for Effective Cancer Immunotherapy. Journal of Biomedicine 2017, 2, 64– https://doi.org/10.7150/jbm.18877.
  54. Viswanath, D.; Park, J.; Misra, R.; Pizzuti, V. J.; Shin, S.-H.; Doh, J.; Won, Y.-Y. Nanotechnology-enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterial-based radio-immunotherapy. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2024, 16 (1), e1924. https://doi.org/10.1002/wnan.1924.
    |
  55. Song, W.; Shen, L.; Wang, Y.; Liu, Q.; Goodwin, T. J.; Li, J.; Dorosheva, O.; Liu, T.; Liu, R.; Huang, L. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 2018, 9 (1), 2237. https://doi.org/1038/s41467-018-04605-x.
    |
  56. Tang, W.; Yang, J.; Yuan, Y.; Zhao, Z.; Lian, Z.; Liang, G. Paclitaxel nanoparticle awakens immune system to fight against cancer. Nanoscale 2017, 9 (19), 6529– https://doi.org/10.1039/c6nr09895a.
    |
  57. Draz, M. S.; Wang, Y.-J.; Chen, F. F.; Xu, Y.; Shafiee, H. Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination against Hepatitis C Virus. Adv. Funct. Mater. 2017, 27 (5), 1604139. https://doi.org/10.1002/adfm.201604139.
    |
  58. Dakterzada, F.; Mohabati Mobarez, A.; Habibi Roudkenar, M.; Mohsenifar, A. Induction of humoral immune response against Pseudomonas aeruginosa flagellin(1-161) using gold nanoparticles as an adjuvant. Vaccine 2016, 34 (12), 1472– https://doi.org/10.1016/j.vaccine.2016.01.041.
    |
  59. Vetro, M.; Safari, D.; Fallarini, S.; Salsabila, K.; Lahmann, M.; Penadés, S.; Lay, L.; Marradi, M.; Compostella, F. Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine 2017, 12 (1), 13– https://doi.org/10.2217/nnm-2016-0306.
    |
  60. Chien-Wei Lin, L.; Chattopadhyay, S.; Lin, -C.; Hu, C.-M. J. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv. Healthcare Mater. 2018, 7 (13), 1701395. https://doi.org/10.1002/adhm.201701395.
    |
  61. Pavot, V.; Climent, N.; Rochereau, N.; Garcia, F.; Genin, C.; Tiraby, G.; Vernejoul, F.; Perouzel, E.; Lioux, T.; Verrier, B.; Paul, S. Directing vaccine immune responses to mucosa by nanosized particulate carriers encapsulating NOD ligands. Biomaterials 2016, 75, 327– https://doi.org/10.1016/j.biomaterials.2015.10.034.
    |
  62. Gargett T.; Abbas M. N.; Rolan P.; Price J. D.; Gosling K. M.; Ferrante A.; Ruszkiewicz A.; Atmosukarto I. I. C.; Altin J.; Parish C. R.; Brown M. P. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol. Immunother. 2018, 67 (9), 1461– https://doi.org/10.1007/s00262-018-2207-z.
    |
  63. Pujol J. L.; De Pas T.; Rittmeyer A.; Vallières E.; Kubisa B.; Levchenko E.; Wiesemann S.; Masters G. A.; Shen R.; Tjulandin S. A.; Hofmann H. S.; Vanhoutte N.; Salaun B.; Debois M.; Jarnjak S.; De Sousa Alves P. M.; Louahed J.; Brichard V. G.; Lehmann F. F. Safety and Immunogenicity of the PRAME Cancer Immunotherapeutic in Patients with Resected Non-Small Cell Lung Cancer: A Phase I Dose Escalation Study. J. Thorac. Oncol. 2016, 11 (12), 2208–2217. https://doi.org/10.1016/j.jtho.2016.08.120.
    |
  64. Zhu, G.; Zhang, F.; Ni, Q.; Niu, G.; Chen, X. Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS Nano 2017, 11 (3), 2387–2392. https://doi.org/10.1021/acsnano.7b00978.
    |

Downloads

Published

2024-04-23

How to Cite

(1)
Piminov, O. F.; Sahaidak-Nikitiuk, R. V.; Kvitchata, A. I.; Rolik-Attia, S. M. Immunotherapy of Diseases and Nanotechnology: Current State and Prospects. J. Org. Pharm. Chem. 2024, 22, 13-21.