Podophyllotoxin and Aryltetralin Lignans: Methods for the Synthesis of Rings A, B, C, D

Authors

  • Francisco Flores-Hernández Laboratorio de Química Farmacéutica, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías Universidad de Guadalajara, Mexico
  • Tania Isabel Zárate-López Laboratorio de Química Farmacéutica, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías Universidad de Guadalajara, Mexico
  • Marco Antonio Alcaráz-Cano Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Mexico
  • Jaime Escalante Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Mexico https://orcid.org/0000-0001-5485-0244
  • José Domingo Rivera-Ramírez Laboratorio de Química Farmacéutica, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías Universidad de Guadalajara, Mexico

DOI:

https://doi.org/10.24959/ophcj.24.308942

Keywords:

lignans, podophyllotoxin, aryltetralin-lignans, etoposide, teniposide

Abstract

Podophyllotoxin, its derivatives and structural analogues are an extensive group of aryl-tetralin-lignans of interest in pharmacology due to their promising anticancer and antitumor activity. The synthesis methods that have been proposed to date seek to resolve synthetic, stereochemical, pharmacodynamic and environmental aspects. In this review we have updated and brought together different classifications of lignan and podophyllotoxin synthesis. Transformation methods focus on the strategies used to form or functionalize rings A, B, C and D, as well as the configuration of the system of four stereogenic centers that fuse rings C and D.

Supporting Agency

  • The authors thank the Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT) for the funding granted to carry out this research through the Ciencia Frontera project No. 610262 called “The chemo-enzymatic synthesis of podophyllotoxin-type lignans using green chemistry bases and their evaluation as probable antitumor compounds.”

Downloads

Download data is not yet available.

References

  1. Seegers, C.; Setroikromo, R.; Quax, W. Towards Metabolic Engineering of Podophyllotoxin Production. In Natural Products and Cancer Drug Discovery, Farid, A. B., Ed. IntechOpen: Rijeka, 2017. https://doi.org/10.5772/67615.
  2. Cheng, W.-H.; Shang, H.; Niu, C.; Zhang, Z.-H.; Zhang, L.-M.; Chen, H.; Zou, Z.-M. Synthesis and Evaluation of New Podophyllotoxin Derivatives with in Vitro Anticancer Activity. Molecules 2015, 20, 12266 - 12279. https://doi.org/10.3390/molecules200712266.
    | |
  3. Gordaliza, M.; Garcı́a, P. A.; Miguel del Corral, J. M.; Castro, M. A.; Gómez-Zurita, M. A. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 2004, 44 (4), 441 - 459. https://doi.org/10.1016/j.toxicon.2004.05.008.
    | |
  4. Moss, G. P. Nomenclature of Lignans and Neolignans (IUPAC Recommendations 2000). Pure Appl. Chem. 2000, 72 (8), 1493 - 1523. https://doi.org/10.1351/pac200072081493.
    |
  5. Hande, K. R. Etoposide: four decades of development of a topoisomerase II inhibitor. European Journal of Cancer 1998, 34 (10), 1514 - 1521. https://doi.org/10.1016/S0959-8049(98)00228-7.
    | |
  6. Kaplan, I. W. Condylomata acuminata. New Orleans Med. Surg. J. 1942, 94, 388 - 390.
  7. Guerram, M.; Jiang, Z.-Z.; Zhang, L.-Y. Podophyllotoxin, a medicinal agent of plant origin: past, present and future. Chinese Journal of Natural Medicines 2012, 10 (3), 161 - 169. https://doi.org/10.3724/SP.J.1009.2012.00161.
    |
  8. Singh, A.; Choudhary, R.; Ganguly, S. Podophyllin in Dermatology: Revisiting a Historical Drug. Indian Dermatol Online J. 2022, 24, 167 - 171. https://doi.org/10.4103/idoj.idoj_225_21.
    | |
  9. Fathi-karkan, S.; Arshad, R.; Rahdar, A.; Ramezani, A.; Behzadmehr, R.; Ghotekar, S.; Pandey, S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. European Journal of Medicinal Chemistry, 2023, 115676. https://doi.org/10.1016/j.ejmech.2023.115676
    | |
  10. Guo, Q.; Jiang, E.; Recent Advances in the Application of Podophyllotoxin Derivatives to Fight Against Multidrug-Resistant Cancer Cells. Curr Top Med Chem. 2021, 21, 1712 - 1724. https://doi.org/10.2174/1568026621666210113163327.
    | |
  11. (a) Gensler, W. J.; Gatsonis, C. D. The Podophyllotoxin—Picropodophyllin Equilibrium1,2. J. Org. Chem. 1966, 31 (10), 3224 - 3227. https://doi.org/10.1021/jo01348a030. (b) Gensler, W. J.; Gatsonis, C. D. Synthesis of Podophyllotoxin. J. Org. Chem. 1966, 31 (12), 4004 - 4008. https://doi.org/10.1021/jo01350a028.
    | |
  12. Medarde, M.; Ramos, A. C.; Caballero, E.; Luis López, J.; Peláez-Lamamiéde Clairac, R.; San Feliciano, A. A new approach to the synthesis of podophyllotoxin based on epimerization reactions. Tetrahedron Lett. 1996, 37 (15), 2663 - 2666. https://doi.org/10.1016/0040-4039(96)00355-3.
    |
  13. Keller-Juslen, C.; Kuhn, M.; Von Wartburg, A.; Staehelin, H. Mitosis-inhibiting natural products. 24. Synthesis and antimitotic activity of glycosidic lignan derivatives related to podophyllotoxin. J. Med. Chem. 1971, 14 (10), 936 - 940. https://doi.org/10.1021/jm00292a012.
    | |
  14. Decembrino, D.; Raffaele, A.; Knöfel, R.; Girhard, M.; Urlacher, V. B. Synthesis of (–)–deoxypodophyllotoxin and (–)–epipodophyllotoxin via a multi-enzyme cascade in E. coli. Microbial Cell Factories 2021, 20 (1), 183. https://doi.org/10.1186/s12934-021-01673-5.
    | |
  15. Schultz, B. J.; Kim, S. Y.; Lau, W.; Sattely, E. S. Total Biosynthesis for Milligram-Scale Production of Etoposide Intermediates in a Plant Chassis. J. Am. Chem. Soc. 2019, 141 (49), 19231 - 19235. https://doi.org/10.1021/jacs.9b10717.
    | |
  16. Wessig, P.; John, L.; Mertens, M. Extending the Class of [1,3]-Dioxolo[4.5-f]benzodioxole (DBD) Fluorescent Dyes. J. Org. Chem. 2018, 2018 (14), 1674 - 1681. https://doi.org/10.1002/ejoc.201800002.
    |
  17. Preparation method of piperonal (Suzhou Homesun Pharmaceutical Co ltd). Patent CN108752310 B, Nov 6, 2018.
  18. Yanagisawa, A.; Chujo, I.; Tsumuki, H.; Mohri, Sh.-i. Process for preparation of 1,3-benzodioxole-2-spiro-cycloalkane derivatives (KH Neochem Co Ltd). Patent EP1535920 A1, Jun 1, 2005.
  19. Aitken, R. A. 5.6 - Five-Membered Ring Systems: With O and S (Se, Te) Atoms. In Prog. Heterocycl. Chem., Gribble, G. W.; Joule, J. A., Eds. Elsevier: 2020; Vol. 31, pp. 379 - 397. https://doi.org/10.1016/B978-0-12-819962-6.00010-5.
    |
  20. Jin, Z.; Ro, D.-K.; Kim, S.-U.; Kwon, M. Piperonal synthase from black pepper (Piper nigrum) synthesizes a phenolic aroma compound, piperonal, as a CoA-independent catalysis. Applied Biological Chemistry 2022, 65 (1), 20. https://doi.org/10.1186/s13765-022-00691-0.
    | |
  21. Lima, L. M. Safrole and the Versatility of a Natural Biophore. Rev. Virtual Quim. 2015, 7 (2), 495 - 538. https://doi.org/10.5935/1984-6835.20150023.
    |
  22. Tentori, F.; Brenna, E.; Ferrari, C.; Gatti, F. G.; Ghezzi, M. C.; Parmeggiani, F. Chemo-enzymatic oxidative cleavage of isosafrole for the synthesis of piperonal. Reaction Chemistry & Engineering 2021, 6 (9), 1591 - 1600. https://doi.org/10.1039/D1RE00173F.
    |
  23. Tanigawa, H.; Oka, K. Process for the production of sesamol formic acid ester and sesamol (Daicel Corp). Patent DE60101020 T2, Jun 24, 2004.
  24. Robinson, G. M. XXX.—A reaction of homopiperonyl and of homoveratryl alcohols. Journal of the Chemical Society, Transactions 1915, 107 (0), 267 - 276. https://doi.org/10.1039/CT9150700267.
  25. Kende, A. S.; Liebeskind, L. S.; Mills, J. E.; Rutledge, P. S.; Curran, D. P. Oxidative aryl-benzyl coupling. A biomimetic entry to podophyllin lignan lactones. J. Am. Chem. Soc. 1977, 99 (21), 7082 - 7083. https://doi.org/10.1021/ja00463a062.
    | |
  26. Brown, E.; Daugan, A. An easy preparation of (–) and (+)-β-piperonyl-γ-butyrolactones, key-intermediates for the synthesis of optically active lignans. Tetrahedron Lett. 1985, 26 (33), 3997 - 3998. https://doi.org/10.1016/S0040-4039(00)98707-0.
    |
  27. Tomioka, K.; Mizuguchi, H.; Koga, K. Studies directed towards the asymmetric total synthesis of antileukemic lignan lactones. Synthesis of (–)-podorhizon. Tetrahedron Lett. 1978, 19 (47), 4687 - 4690. https://doi.org/10.1016/S0040-4039(01)85705-1.
  28. Kosugi, H.; Tagami, K.; Takahashi, A.; Kanna, H.; Uda, H. Highly enantiospecific synthesis of 4-alkyl and 4,5-dialkyl substituted 4,5-dihydrofuran-2(3H)-ones from optically active (E)- and (Z)-alk-1-enyl p-tolyl sulphoxides: application to the synthesis of lignan lactones. J. Chem. Soc., Perkin Trans. 1 1989, 5, 935 - 943. https://doi.org/10.1039/P19890000935.
    |
  29. Van der Eycken, J.; De Clercq, P.; Vandewalle, M. Total synthesis of podophyllum lignans : an exploratory study. Tetrahedron 1986, 42 (15), 4285 - 4295. https://doi.org/10.1016/S0040-4020(01)87655-9.
    |
  30. Van der Eycken, J.; De Clercq, P.; Vandewalle, M. Total synthesis of (±)-podophyllotoxin and (±)-epipodophyllotoxin. Tetrahedron 1986, 42 (15), 4297 - 4308. https://doi.org/10.1016/S0040-4020(01)87656-0.
    |
  31. Kende, A. S.; King, M. L.; Curran, D. P. Total synthesis of (±)-4'-demethyl-4-epipodophyllotoxin by insertion-cyclization. Org. Chem. 1981, 46 (13), 2826 - 2828. https://doi.org/10.1021/jo00326a056.
    |
  32. Wu, Y.; Zhao, J.; Chen, J.; Pan, C.; Li, L.; Zhang, H. Enantioselective Sequential Conjugate Addition–Allylation Reactions: A Concise Total Synthesis of (+)-Podophyllotoxin. Org. Lett. 2009, 11 (3), 597 - 600. https://doi.org/10.1021/ol8026208.
    | |
  33. Wu, Y.; Zhang, H.; Zhao, Y.; Zhao, J.; Chen, J.; Li, L. A New and Efficient Strategy for the Synthesis of Podophyllotoxin and Its Analogues. Org. Lett. 2007, 9 (7), 1199 - 1202. https://doi.org/10.1021/ol0630954.
    | |
  34. Ward, R. S. Synthesis of Podophyllotoxin and Related Compounds. Synthesis 1992, 1992 (08), 719 - 730. https://doi.org/10.1055/s-1992-26207.
  35. Peterson, J. R.; Do, H. D.; Rogers, R. D. Anticancer Agent Development; 6.1 Application of the Heterocycle Annulation-Rearrangement Strategy in the Synthesis of a Podophyllotoxin Precursor. Synthesis 1991, 1991 (04), 275 - 277. https://doi.org/10.1055/s-1991-26444.
    |
  36. Murphy, W. S.; Wattanasin, S. An improved route to an intermediate in podophyllotoxin synthesis. J. Chem. Soc., Chem. Commun. 1980, 6, 262 - 263. https://doi.org/10.1039/C39800000262.
    |
  37. Vyas, D. M.; Skonezny, P. M.; Jenks, T. A.; Doyle, T. W. Total synthesis of (±) epipodophyllotoxin via a (3 + 2)-cycloaddition strategy. Tetrahedron Lett. 1986, 27 (27), 3099 - 3102https://doi.org/10.1016/S0040-4039(00)84725-5.
    |
  38. Kende, A. S.; Liebeskind, L. S. Total synthesis of (±)-steganacin. J. Am. Chem. Soc. 1976, 98 (1), 267 - 268. https://doi.org/10.1021/ja00417a060.
    | |
  39. Rodrigo, R. A stereo- and regiocontrolled synthesis of Podophyllum lignans. J. Org. Chem. 1980, 45 (22), 4538 - 4540. https://doi.org/10.1021/jo01310a067.
    |
  40. Berkowitz, D. B.; Maeng, J.-H.; Dantzig, A. H.; Shepard, R. L.; Norman, B. H. Chemoenzymatic and Ring E-Modular Approach to the (–)-Podophyllotoxin Skeleton. Synthesis of 3‘,4‘,5‘-Tridemethoxy-(–)-podophyllotoxin. J. Am. Chem. Soc. 1996, 118 (39), 9426-9427. https://doi.org/10.1021/ja961489s.
    |
  41. Glinski, M. B.; Durst, T. Synthesis of (±)-epiisopodophyllotoxin. Can. J. Chem. 1983, 61 (3), 573 - 575. https://doi.org/10.1139/v83-101.
    |
  42. Jones, D. W.; Thompson, A. M. Synthesis of podophyllum lignans via an isolable o-quinonoid pyrone. J. Chem. Soc., Chem. Commun. 1987, 23, 1797 - 1798. https://doi.org/10.1039/C39870001797.
    |
  43. Jones, D. W.; Thompson, A. M. Synthesis of podophyllum lignans via an isolable o-quinonoid pyrone. J. Chem. Soc., Perkin Trans. 1 1993, 21, 2533 - 2540. https://doi.org/10.1039/P19930002533.
    |
  44. Bogucki, D. E.; Charlton, J. L. An Asymmetric Synthesis of (-)-Deoxypodophyllotoxin. J. Org. Chem. 1995, 60 (3), 588 - 593. https://doi.org/10.1021/jo00108a021.
    |
  45. Takano, S.; Hatakeyama, S.; Ogasawara, K. Alternative synthesis of (±)-eburunamenine via cleavage of a cyclic dithioacetal of an α-oxo-thione. J. Chem. Soc., Chem. Commun. 1977, 2, 68. https://doi.org/10.1039/C39770000068.
    |
  46. Choy, W. An enantioselective total synthesis of epiisopodophyllotoxin. Tetrahedron 1990, 46 (7), 2281 - 2286. https://doi.org/10.1016/S0040-4020(01)82009-3.
    |
  47. Ting, C. P.; Maimone, T. J. C-H Bond Arylation in the Synthesis of Aryltetralin Lignans: A Short Total Synthesis of Podophyllotoxin. Angew. Chem. Int. Ed. 2014, 53 (12), 3115 - 3119. https://doi.org/10.1002/anie.201311112.
    | |
  48. Ting, C. P.; Tschanen, E.; Jang, E.; Maimone, T. J. Total synthesis of podophyllotoxin and select analog designs via C–H activation. Tetrahedron 2019, 75 (24), 3299 - 3308. https://doi.org/10.1016/j.tet.2019.04.052.
    |
  49. Klemm, L. H.; Gopinath, K. W. An intramolecular diels-alder reaction. A simple synthesis of γ-apopicropodophyllin. Tetrahedron Lett. 1963, 4 (19), 1243 - 1245. https://doi.org/10.1016/S0040-4039(01)90810-X.
  50. Klemm, L. H.; Gopinath, K. W.; Hsu Lee, D.; Kelly, F. W.; Trod, E.; McGuire, T. M. The intramolecular diels-alder reaction as a route to synthetic lignan lactones. Tetrahedron 1966, 22 (6), 1797 - 1808. https://doi.org/10.1016/S0040-4020(01)82253-5.
  51. Klemm, L. H.; Lee, D. H.; Gopinath, K. W.; Klopfenstein, C. E. Intramolecular Diels—Alder Reactions. III. Cyclizations of trans-Cinnamyl and Phenylpropargyl Phenylpropiolates1a. J. Org. Chem. 1966, 31 (7), 2376 - 2380. https://doi.org/10.1021/jo01345a070.
  52. Klemm, L. H.; Olson, D. R.; White, D. V. Intramolecular Diels-Alder reactions. VII. Electroreduction of .alpha.,.beta.-unsaturated esters. I. Synthesis of rac-deoxypicropodophyllin by intramolecular Diels-Alder reaction plus trans addition of hydrogen. J. Org. Chem. 1971, 36 (24), 3740 - 3743. https://doi.org/10.1021/jo00823a017.
    |
  53. Saavedra, D. I.; Rencher, B. D.; Kwon, D.-H.; Smith, S. J.; Ess, D. H.; Andrus, M. B. Synthesis and Computational Studies Demonstrate the Utility of an Intramolecular Styryl Diels–Alder Reaction and Di-t-butylhydroxytoluene Assisted [1,3]-Shift to Construct Anticancer dl-Deoxypodophyllotoxin. J. Org. Chem. 2018, 83 (4), 2018 - 2026. https://doi.org/10.1021/acs.joc.7b02957.
    | |
  54. Klemm, L. H.; Gopinath, K. W.; Karaboyas, G. C.; Capp, G. L.; Hsu Lee, D. Syntheses and spectral studies of some dienic and enynic esters. Tetrahedron 1964, 20 (4), 871 - 876. https://doi.org/10.1016/S0040-4020(01)98419-4.
  55. Kocsis, L. S.; Brummond, K. M. Intramolecular Dehydro-Diels–Alder Reaction Affords Selective Entry to Arylnaphthalene or Aryldihydronaphthalene Lignans. Org. Lett. 2014, 16 (16), 4158 - 4161. https://doi.org/10.1021/ol501853y.
    | |
  56. Park, J.-E.; Lee, J.; Seo, S.-Y.; Shin, D. Regioselective route for arylnaphthalene lactones: convenient synthesis of taiwanin C, justicidin E, and daurinol. Tetrahedron Lett. 2014, 55 (4), 818 - 820. https://doi.org/10.1016/j.tetlet.2013.12.014.
    |
  57. Macdonald, D. I.; Durst, T. A highly stereoselective Diels-Alder based synthesis of (±)-podophyllotoxin. J. Org. Chem. 1986, 51 (24), 4749 - 4750. https://doi.org/10.1021/jo00374a056.
    |
  58. Macdonald, D. I.; Durst, T. A highly stereoselective synthesis of podophyllotoxin and analogues based on an intramolecular Diels-Alder reaction. J. Org. Chem. 1988, 53 (16), 3663 - 3669. https://doi.org/10.1021/jo00251a003.
    |
  59. Jung, M. E.; Lam, P. Y. S.; Mansuri, M. M.; Speltz, L. M. Stereoselective synthesis of an analog of podophyllotoxin by an intramolecular Diels-Alder reaction. J. Org. Chem. 1985, 50 (7), 1087 - 1105. https://doi.org/10.1021/jo00207a034.
    |
  60. Lisiecki, K.; Krawczyk, K. K.; Roszkowski, P.; Maurin, J. K.; Czarnocki, Z. Formal synthesis of (–)-podophyllotoxin through the photocyclization of an axially chiral 3,4-bisbenzylidene succinate amide ester – a flow photochemistry approach. Org. Biomol. Chem. 2016, 14 (2), 460 - 469. https://doi.org/10.1039/C5OB01844G.
    | |
  61. González, A. G.; de la Rosa, R.; Trujillo, J. M. Synthesis of new aryltetralin lignans. Tetrahedron 1986, 42 (14), 3899 - 3904. https://doi.org/10.1016/S0040-4020(01)87544-X.
    |
  62. Ziegler, F. E.; Schwartz, J. A. Synthetic studies on lignan lactones: aryl dithiane route to (±)-podorhizol and (±)-isopodophyllotoxone and approaches to the stegane skeleton. J. Org. Chem. 1978, 43 (5), 985 - 991. https://doi.org/10.1021/jo00399a040.
    |
  63. González, A. G.; Pérez, J. P.; Trujillo, J. M. Synthesis of two arylnaphthalene lignans. Tetrahedron 1978, 34 (7), 1011 - 1013. https://doi.org/10.1016/0040-4020(78)88156-3.
    |
  64. Pelter, A.; Ward, R. S.; Pritchard, M. C.; Kay, I. T. Synthesis of lignans related to the podophyllotoxin series. J. Chem. Soc., Perkin Trans. 1 1988, 6, 1603 - 1613. https://doi.org/10.1039/P19880001603.
    |
  65. Kutney, J. P. Plant Cell Cultures and Synthetic Chemistry—Routes to Clinically Important Compounds. In Phytochemical Potential of Tropical Plants, Downum, K. R.; Romeo, J. T.; Stafford, H. A., Eds. Springer US: Boston, MA, 1993; pp 235 - 265. https://doi.org/10.1007/978-1-4899-1783-6_10.
  66. Hadimani, S. B.; Tanpure, R. P.; Bhat, S. V. Asymmetric total synthesis of (–) podophyllotoxin. Tetrahedron Lett. 1996, 37 (27), 4791 - 4794. https://doi.org/10.1016/0040-4039(96)00937-9.
    |
  67. Pelter, A.; Ward, R. S.; Jones, D. M.; Maddocks, P. Asymmetric synthesis of homochiral dibenzylbutyrolactone lignans by conjugate addition to a chiral butenolide. Tetrahedron: Asymmetry 1990, 1 (12), 857 - 860. https://doi.org/10.1016/S0957-4166(00)82273-9.
    |
  68. Pelter, A.; Ward, R. S.; Jones, D. M.; Maddocks, P. Asymmetric syntheses of lignans of the dibenzylbutyrolactone, dibenzylbutanediol, aryltetraun and dibenzocyclooctadiene series. Tetrahedron: Asymmetry 1992, 3 (2), 239 - 242. https://doi.org/10.1016/S0957-4166(00)80200-1.
    |
  69. Palter, A.; Ward, R. S.; Jones, D. M.; Maddocks, P. Asymmetric synthesis of lignans of the dibenzylbutanediol and tetrahydrodibenzocyclooctene series. J. Chem. Soc., Perkin Trans. 1 1993, 21, 2631 - 2637. https://doi.org/10.1039/P19930002631.
    |
  70. Pelter, A.; Ward, R. S.; Jones, D. M.; Maddocks, P. Asymmetric synthesis of dibenzylbutyrolactones and aryltetralin lignan lactones by tandem conjugate addition to a chiral butenolide. J. Chem. Soc., Perkin Trans. 1 1993, 21, 2621 - 2629. https://doi.org/10.1039/P19930002621.
    |
  71. Van Speybroeck, R.; Guo, H.; Van der Eycken, J.; Vandewalle, M. Enantioselective total synthesis of (–)-epipodophyllotoxin and (–)-podophyllotoxin. Tetrahedron 1991, 47 (26), 4675 - 4682. https://doi.org/10.1016/S0040-4020(01)86473-5.
    |
  72. Tomioka, K.; Ishiguro, T.; Koga, K. Asymmetric total synthesis of the antileukaemic lignans (+)-trans-burseran and (–)-isostegane. J. Chem. Soc., Chem. Commun. 1979, 15, 652 - 653. https://doi.org/10.1039/C39790000652.
    |
  73. Ogiku, T.; Yoshida, S.-i.; Kuroda, T.; Takahashi, M.; Ohmizu, H.; Iwasaki, T. Syntheses of Aryltetralin Lignans: Concise Syntheses of (±)-Isopodophyllotoxone, (±)-Picropodophyllone and Their Related Compounds. Bull. Chem. Soc. Jpn. 2006, 65 (12), 3495 - 3497. https://doi.org/10.1246/bcsj.65.3495.
    |
  74. Ward, R.; Pelter, A.; Brizzi, A.; Sega, A.; Paoli, P. Synthesis of Diversely Functionalised Dibenzylbutyrolactones and Aryltetralins from Silylated Cyanohydrin Anions. Journal of Chemical Research, Synopses 1998, 5, 226 - 227. https://doi.org/10.1039/A704399F.
    |
  75. Enders, D.; Kirchhoff, J.; Lausberg, V. Diastereo- and Enantioselective Synthesis of Lignan Building Blocks by Tandem Michael Addition/Electrophilic Substitution of Lithiated α-Amino Nitriles to Furan-2(5H)-one. Liebigs Annalen 1996, 1996 (9), 1361 - 1366. https://doi.org/10.1002/jlac.199619960904.
    |
  76. Enders, D.; Lausberg, V.; Del Signore, G.; Berner, O. M. A General Approach to the Asymmetric Synthesis of Lignans: (-)-Methyl Piperitol, (-)-Sesamin, (-)-Aschantin, (+)-Yatein, (+)-Dihydroclusin, (+)-Burseran, and (-)-Isostegane. Synthesis 2002, 2002 (04), 0515 - 0522. https://doi.org/10.1055/s-2002-20967.
  77. Pelter, A.; S. Ward, R.; P. Storer, N. The asymmetric synthesis of an isomer of podophyllotoxin. Tetrahedron 1994, 50 (36), 10829 - 10838. https://doi.org/10.1016/S0040-4020(01)89274-7.
    |
  78. Hajra, S.; Garai, S.; Hazra, S. Catalytic Enantioselective Synthesis of (–)-Podophyllotoxin. Org. Lett. 2017, 19 (24), 6530 - 6533. https://doi.org/10.1021/acs.orglett.7b03236.
    | |
  79. Lazzarotto, M.; Hammerer, L.; Hetmann, M.; Borg, A.; Schmermund, L.; Steiner, L.; Hartmann, P.; Belaj, F.; Kroutil, W.; Gruber, K.; Fuchs, M. Chemoenzymatic Total Synthesis of Deoxy-, epi-, and Podophyllotoxin and a Biocatalytic Kinetic Resolution of Dibenzylbutyrolactones. Angew. Chem. Int. Ed. 2019, 58 (24), 8226 - 8230. https://doi.org/10.1002/anie.201900926.
    | |
  80. Li, J.; Zhang, X.; Renata, H. Asymmetric Chemoenzymatic Synthesis of (–)-Podophyllotoxin and Related Aryltetralin Lignans. Angew. Chem. Int. Ed. 2019, 58 (34), 11657 - 11660. https://doi.org/10.1002/anie.201904102.
    | |
  81. Stadler, D.; Bach, T. Concise Stereoselective Synthesis of (–)-Podophyllotoxin by an Intermolecular Iron(III)-Catalyzed Friedel–Crafts Alkylation. Angew. Chem. Int. Ed. 2008, 47 (39), 7557 - 7559. https://doi.org/10.1002/anie.200802611.
    | |
  82. Forsey, S. P.; Rajapaksa, D.; Taylor, N. J.; Rodrigo, R. Comprehensive synthetic route to eight diastereomeric Podophyllum lignans. J. Org. Chem. 1989, 54 (18), 4280 - 4290. https://doi.org/10.1021/jo00279a011.
    |
  83. Rajapaksa, D.; Rodrigo, R. A stereocontrolled synthesis of antineoplastic podophyllum lignans. J. Am. Chem. Soc. 1981, 103 (20), 6208 - 6209. https://doi.org/10.1021/ja00410a038.
    |
  84. Murphy, W. S.; Wattanasin, S. Total synthesis of (±)-picropodophyllone. J. Chem. Soc., Perkin Trans. 1 1982, 0, 271 - 276. https://doi.org/10.1039/P19820000271.
    |
  85. Kaneko, T.; Wong, H. Total synthesis of (±) podophyllotoxin. Tetrahedron Lett. 1987, 28 (5), 517 - 520. https://doi.org/10.1016/S0040-4039(00)95770-8.
    |
  86. Andrews, R. C.; Teague, S. J.; Meyers, A. I. Asymmetric total synthesis of (-)-podophyllotoxin. J. Am. Chem. Soc. 1988, 110 (23), 7854 - 7858. https://doi.org/10.1021/ja00231a041.
    |
  87. Fischer, J.; Reynolds, A. J.; Sharp, L. A.; Sherburn, M. S. Radical Carboxyarylation Approach to Lignans. Total Synthesis of (–)-Arctigenin, (–)-Matairesinol, and Related Natural Products. Org. Lett. 2004, 6 (9), 1345 - 1348. https://doi.org/10.1021/ol049878b.
    | |
  88. Anjanamurthy, C.; Rai, K. M. L. Synthesis in the field of podophyllotoxin and related analogues. Part IV: Synthesis of β-apopicropodophyllin analogues with expanded lactone ring. Current Science 1985, 54 (2), 67 - 69.
  89. Gensler, W. J.; Murthy, C. D.; Trammell, M. H. Nonenolizable podophyllotoxin derivatives. J. Med. Chem. 1977, 20 (5), 635 - 644. https://doi.org/10.1021/jm00215a004.
    | |
  90. Suresh Babu, M.; Madhavu Lokanatha Rai, K. Synthesis of Podophyllotoxin and its Derivatives via NiCl2/NaBH4 Reduction of Isoxazoline Ring. Asian J. Chem. 2013, 25 (17), 9555 - 9557. https://doi.org/10.14233/ajchem.2013.15073.
    |

Downloads

Published

2024-11-08

How to Cite

(1)
Flores-Hernández, F.; Zárate-López, T. I.; Alcaráz-Cano, M. A.; Escalante, J.; Rivera-Ramírez, J. D. Podophyllotoxin and Aryltetralin Lignans: Methods for the Synthesis of Rings A, B, C, D. J. Org. Pharm. Chem. 2024, 22, 3-25.

Issue

Section

Review Articles