Ring Expansion Reactions via C-N Bond Cleavage in the Synthesis of Medium-sized Cycles and Macrocycles
DOI:
https://doi.org/10.24959/ophcj.24.312453Keywords:
cleavage, ring expansion, aminal, amidines, medium-sized cycles, macrocyclesAbstract
The literature review discusses and systematizes synthetic approaches to medium-sized cycles and macrocycles based on ring expansion reactions of bi- or polycyclic systems via C-N bond cleavage. Ring expansion reactions of bicyclic ammonium salts proceed via thermal decomposition or the action of strong bases. Bi- or polycyclic systems containing a common amine group can be reduced with strong reducing reagents, e.g. lithium aluminum hydride. Ammonium derivatives are much more prone to nucleophilic attack and quite often are used as starting materials for the synthesis of medium-sized cycles. Bicyclic systems containing a common aminal or amidine group are used for the synthesis of medium-sized rings and macrocycles via cleavage of the endocyclic C-N bond. Various methods of their activation and reduction are discussed in the review.
Supporting Agency
- The authors received no specific funding for this work.
Downloads
References
- Kurouchi, H.; Ohwada, T. Synthesis of Medium-Ring-Sized Benzolactams by Using Strong Electrophiles and Quantitative Evaluation of Ring-Size Dependency of the Cyclization Reaction Rate. J. Org. Chem. 2020, 85 (2), 876 - 901. https://doi.org/10.1021/acs.joc.9b02843.
| | - Majumdar, K. C. Regioselective Formation of Medium-Ring Heterocycles of Biological Relevance by Intramolecular Cyclization. RSC Adv. 2011, 1 (7), 1152. https://doi.org/10.1039/c1ra00494h.
| - Molander, G. A. Diverse Methods for Medium Ring Synthesis. Acc. Chem. Res. 1998, 31 (10), 603 - 609. https://doi.org/10.1021/ar960101v.
| - Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. Synthesis of Medium Ring Nitrogen Heterocycles via a Tandem Copper-Catalyzed C–N Bond Formation−Ring-Expansion Process. J. Am. Chem. Soc. 2004, 126 (11), 3529 - 3533. https://doi.org/10.1021/ja038565t.
| | - Yet, L. Metal-Mediated Synthesis of Medium-Sized Rings. Chem. Rev. 2000, 100 (8), 2963 - 3008. https://doi.org/10.1021/cr990407q.
| | - Maier, M. E. Synthesis of Medium-Sized Rings by the Ring-Closing Metathesis Reaction. Angew. Chem., Int. Ed. 2000, 39 (12), 2073 - 2077. https://doi.org/10.1002/1521-3773(20000616)39:12<2073::AID-ANIE2073>3.0.CO;2-0.
| | - White, C. J.; Yudin, A. K. Contemporary Strategies for Peptide Macrocyclization. Nat. Chem. 2011, 3 (7), 509 - 524. https://doi.org/10.1038/nchem.1062.
| | - Donald, J. R.; Unsworth, W. P. Ring‐Expansion Reactions in the Synthesis of Macrocycles and Medium‐Sized Rings. Chem. – Eur. J. 2017, 23 (37), 8780 - 8799. https://doi.org/10.1002/chem.201700467.
| | - Hesse, M. Ring Enlargement in Organic Chemistry; VCH, 1991.
- Clarke, A. K.; Unsworth, W. P. A Happy Medium: The Synthesis of Medicinally Important Medium-Sized Rings via Ring Expansion. Chem. Sci. 2020, 11 (11), 2876 - 2881. https://doi.org/10.1039/D0SC00568A.
| | - Clemo, G. R.; Ramage, G. R.; Raper, R. 455. The Lupin Alkaloids. Part VI. Journal of the Chemical Society (Resumed) 1932, 2959. https://doi.org/10.1039/jr9320002959.
- Sugimoto, K.; Ohme, K.; Akiba, M.; Ohki, S. Hofmann Degradation of Quinolizidine (Synthesis of Quinolizine Derivatives. XXII). Chem. Pharm. Bull. (Tokyo) 1970, 18 (6), 1273 - 1276. https://doi.org/10.1248/cpb.18.1273.
- Miyano, S.; Mibu, N.; Fujii, S.; Abe, N.; Sumoto, K. Studies on Pyrrolizidines and Related Compounds. Part 8. A New Route to Perhydroazocines and Related Compounds Using 1,2,3,5,6,7-Hexahydropyrrolizinylium Perchlorate. J. Chem. Soc., Perkin Trans. 1 1985, 2611. https://doi.org/10.1039/p19850002611.
| - Reinecke, M. G.; Kray, L. R.; Francis, R. F. A General Synthesis of Medium-Sized Ring Amines. Tetrahedron Lett. 1965, 6 (40), 3549 - 3553. https://doi.org/10.1016/S0040-4039(01)99537-1.
- Reinecke, M. G.; Kray, L. R.; Francis, R. F. Peripheral Synthesis of Medium-Ring Nitrogen Heterocycles via Beta-Elimination Reactions. J. Org. Chem. 1972, 37 (22), 3489 - 3493. https://doi.org/10.1021/jo00795a021.
| - Reinecke, M. G.; Francis, R. F. Peripheral Synthesis of Medium-Ring Nitrogen Heterocycles by Displacement Reactions. J. Org. Chem. 1972, 37 (22), 3494 - 3499. https://doi.org/10.1021/jo00795a022.
| - Reinecke, M. G.; Daubert, R. G. Peripheral Synthesis of Secondary Medium-Ring Nitrogen Heterocycles. J. Org. Chem. 1973, 38 (19), 3281 - 3287. https://doi.org/10.1021/jo00959a009.
| - Miyano, S.; Yamashita, O.; Sumoto, K.; Shima, K.; Hayashimatsu, M.; Satoh, F. Application of 1,2,3,5,6,7-hexahydropyrrolizinium perchlorate in the synthesis of 7a-substituted hexahydro-1h-pyrrolizines. J. Heterocycl. Chem. 1987, 24 (1), 271-274. https://doi.org/10.1002/jhet.5570240152.
| - Winn, M.; Zaugg, H. E. Intramolecular Amidoalkylations at Carbon. Synthesis of Heterocyclic Amines. J. Org. Chem. 1968, 33 (10), 3779 - 3783. https://doi.org/10.1021/jo01274a021.
- Yardley, J. P.; Rees, R. W.; Smith, H. Synthesis and Amebicidal Activities of Some 1′,2′-Secoemetine Derivatives. J. Med. Chem. 1967, 10 (6), 1088 - 1091. https://doi.org/10.1021/jm00318a023.
| | - Herbst, D.; Rees, R.; Hughes, G. A.; Smith, H. The Preparation and Biological Activities of Some Azonino- and Azecinoindoles and Benzazecines. J. Med. Chem. 1966, 9 (6), 864 - 868. https://doi.org/10.1021/jm00324a020.
| | - Rostom, S. A. F. Novel Fused Pyrrole Heterocyclic Ring Systems as Structure Analogs of LE 300: Synthesis and Pharmacological Evaluation as Serotonin 5‐HT2A, Dopamine and Histamine H1 Receptor Ligands. Arch. Pharm. (Weinheim) 2010, 343 (2), 73 - 80. https://doi.org/10.1002/ardp.200900219.
| | - Alder, R. W.; Arrowsmith, R. J.; Boothby, C. St. J.; Heilbronner, E.; Zhong-zhi, Y. 1-Azabicyclo[4.4.4.]Tetradec-5-Ene. J. Chem. Soc. Chem. Commun. 1982, 16, 940. https://doi.org/10.1039/c39820000940.
| - Coll, J. C.; Crist, D. R.; Barrio, M. del C. G.; Leonard, N. J. Bicyclo[3.3.3.]Undecane and 1-Azabicyclo[3.3.3]Undecane. Geometry, Strain, and Spectroscopic Behavior of These Systems. J. Am. Chem. Soc. 1972, 94 (20), 7092 - 7099. https://doi.org/10.1021/ja00775a037.
| - Calverley, M. J.; Banks, B. J.; Harley-Mason, J. The Total Synthesis of (±)-C-Mavacurine. Tetrahedron Lett. 1981, 22 (17), 1635 - 1638. https://doi.org/10.1016/S0040-4039(01)90397-1.
| - Banks, B. J.; Calverley, M. J.; Edwards, P. D.; Harley-Mason, J. A New Synthesis of Indolo[2,3-α]Quinolizidine Derivatives: A Formal Total Synthesis of (±)-Geissoschizine. Tetrahedron Lett. 1981, 22 (17), 1631 - 1634. https://doi.org/10.1016/S0040-4039(01)90396-X.
| - Calverley, M. J. Chloroformate Ester-Induced Reductive 1,2-Bond Cleavage of Some 1,2,3,4-Tetrahydro-β-Carboline Derivatives. J. Chem. Soc., Chem. Commun. 1981, 23, 1209 - 1210. https://doi.org/10.1039/C39810001209.
| - Liu, C. T.; Sun, S. C.; Yu, Q. S. Synthesis and Photooxidation of the Condensation Products of Tryptamine and Catechol Derivatives. An Approach to the Synthesis of a Probable Precursor of Koumine. J. Org. Chem. 1983, 48 (1), 44 - 47. https://doi.org/10.1021/jo00149a009.
| - Takayama, H.; Masubuchi, K.; Kitajima, M.; Aimi, N.; Sakai, S. A Biomimetic Construction of Humantenine Skeleton. Tetrahedron 1989, 45 (5), 1327 - 1336. https://doi.org/10.1016/0040-4020(89)80131-0.
| - Takayama, H.; Tominaga, Y.; Kitajima, M.; Aimi, N.; Sakai, S. First Synthesis of the Novel Gelsemium Alkaloids, Gelselegine, Gelsenicine, and Gelsedine Using a Biomimetic Approach. J. Org. Chem. 1994, 59 (16), 4381 - 4385. https://doi.org/10.1021/jo00095a010.
| - Mahboobi, S.; Wagner, W.; Burgemeister, T. Syntheses of (RS)‐ and (S)‐(−)‐Nazlinin and (RS)‐ and (+)‐6‐Azacyclodeca[5,4‐b]Indol‐1‐amine. Arch. Pharm. (Weinheim) 1995, 328 (4), 371 - 376. https://doi.org/10.1002/ardp.19953280415.
| - Mahboobi, S.; Wagner, W.; Burgemeister, T.; Wiegrebe, W. Non‐Identity of Nazlinin and 6‐Azacyclodeca[5,4‐b]Indol‐1‐amine. Nicht‐Identität von Nazlinin Und 6‐Azacyclodeca[5,4‐b]Indol‐1‐amin. Arch. Pharm. (Weinheim) 1994, 327 (7), 463 - 465. https://doi.org/10.1002/ardp.19943270709.
| - Calverley, M. J.; Harley-Mason, J.; Quarrie, S. A.; Edwards, P. D. On the Stereochemistry of the Solvolytic c/d Ring Cleavage of the 1,2,3,4,6,7,12,12b-Octahydroindolo[2,3-a] Quinolizine System. Tetrahedron 1981, 37 (8), 1547 - 1556. https://doi.org/10.1016/S0040-4020(01)92094-0.
| - Albright, J. D.; Goldman, L. Alkaloid Studies. V. Reaction of Tertiary Amines with Cyanogen Bromide under Solvolytic Conditions. J. Am. Chem. Soc. 1969, 91 (15), 4317 - 4318. https://doi.org/10.1021/ja01043a067.
- Costa, G.; Riche, C.; Husson, H.-P. Nouvelle Voie d’accès a La Série de l’hexahydroazépino[4,5-b]Indole. Réarrangement de l’hexahydroindolo-[2,3-a]Quinolizine Par Action de BRCN. Tetrahedron 1977, 33 (3), 315 - 320. https://doi.org/10.1016/0040-4020(77)80111-7.
| - Koike, T.; Takayama, H.; Sakai, S. Synthetic Studies on the Picraline-Type Indole Alkaloids-I: Improved Synthesis of C-Mavacurine-Type Compounds and a New Skeletal Rearrangement in a Corynanthe-Type Derivative. Chem. Pharm. Bull. (Tokyo) 1991, 39 (7), 1677 - 1681. https://doi.org/10.1248/cpb.39.1677.
| - Dolby, L. J.; Sakai, S. The C-D Ring Cleavage of Dihydrocorynantheine Derivatives. Tetrahedron 1967, 23 (1), 1 - 9. https://doi.org/10.1016/S0040-4020(01)83280-4.
| | - Harley-Mason, J. Synthetic Studies in the Strychnos-Type Alkaloid Field. Pure Appl. Chem. 1975, 41 (1 - 2), 167 - 174. https://doi.org/10.1351/pac197541010167.
| - Dolby, L.; Gribble, G. The Conversion of Tetrahydro-β-Carbolines into 2-Acylindoles. J. Org. Chem. 1967, 32 (5), 1391 - 1398. https://doi.org/10.1021/jo01280a600.
- Node, M.; Nagasawa, H.; Fuji, K. Chiral Total Synthesis of Indole Alkaloids of the Aspidosperma and Hunteria Types. J. Org. Chem. 1990, 55 (2), 517 - 521. https://doi.org/10.1021/jo00289a025.
| - Takano, S.; Hirama, M.; Ogasawara, K. A New Entry into the Synthesis of the Strychnos Indole Alkaloids Containing 19,20-Double Bond via the Thio-Claiser Rearrangement. Tetrahedron Lett. 1982, 23 (8), 881 - 884. https://doi.org/10.1016/S0040-4039(00)86973-7.
| - Foster, G. H.; Harley-Mason, J.; Waterfield, W. R. Two New Cleavages of Hexahydroindolopyrrocoline Leading to Systems Containing a Nine-Membered Ring. Chemical Communications (London) 1967, 1, 21a. https://doi.org/10.1039/c1967000021a.
- Kutney, J. P.; Chan, K. K.; Failli, A.; Fromson, J. M.; Gletsos, C.; Leutwiler, A.; Nelson, V. R.; de Souza, J. P. Total Synthesis of Indole and Dihydroindole Alkaloids. VI. The Total Synthesis of Some Monomeric Vinca Alkaloids: dl‐Vincadine, dl‐vincaminoreine, dl‐vincaminorine, dl‐vincadifformine, dl‐minovine and dl‐vincaminoridine. Helv. Chim. Acta 1975, 58 (6), 1648 - 1671. https://doi.org/10.1002/hlca.19750580620.
| | - Bremner, J.; Winzenberg, K. Photosolvolysis of Bridgehead Quaternary Ammonium Salts. I. Synthesis of Some 3-Benzazonine Derivatives. Aust. J. Chem. 1984, 37 (6), 1203. https://doi.org/10.1071/CH9841203.
| - Bremner, J.; Winzenberg, K. Photosolvolysis of Bridgehead Quaternary Ammonium Salts. II. Synthesis of Some 2,5-Benzoxazonine Derivatives and Attempted Synthesis of the 1,2,4,5,6,7-Hexahydro-3,5-Benzoxazonine System. Aust. J. Chem. 1984, 37 (8), 1659. https://doi.org/10.1071/CH9841659.
| - Bremner, J.; Winzenberg, K. Photosolvolysis of Bridgehead Quaternary Ammonium Salts. III. Synthesis of Some 3-Benzazecine, 1H-2,6-Benzoxazecine and 2H-3,6-Benzoxazecine Derivatives and a 2H-1,4-Oxazocine Derivative. J. Chem. 1985, 38 (11), 1591. https://doi.org/10.1071/CH9851591.
| - Denzer, M.; Ott, H. Synthesis of 1,5-Benzodiazocines. J. Org. Chem. 1969, 34 (1), 183 - 187. https://doi.org/10.1021/jo00838a040.
- Stavila, V.; Allali, M.; Canaple, L.; Stortz, Y.; Franc, C.; Maurin, P.; Beuf, O.; Dufay, O.; Samarut, J.; Janier, M.; Hasserodt, J. Significant Relaxivity Gap between a Low-Spin and a High-Spin Iron(II) Complex of Structural Similarity: an Attractive off–on System for the Potential Design of Responsive MRI Probes. New J. Chem. 2008, 32 (3), 428 - 435. https://doi.org/10.1039/B715254J.
| - Gasser, G.; Tjioe, L.; Graham, B.; Belousoff, M. J.; Juran, S.; Walther, M.; Künstler, J.-U.; Bergmann, R.; Stephan, H.; Spiccia, L. Synthesis, Copper(II) Complexation, 64Cu-Labeling, and Bioconjugation of a New Bis(2-Pyridylmethyl) Derivative of 1,4,7-Triazacyclononane. Bioconjug. Chem. 2008, 19 (3), 719 - 730. https://doi.org/10.1021/bc700396e.
| | - Roger, M.; Lima, L. M. P.; Frindel, M.; Platas-Iglesias, C.; Gestin, J.-F.; Delgado, R.; Patinec, V.; Tripier, R. Monopicolinate-Dipicolyl Derivative of Triazacyclononane for Stable Complexation of Cu2+ and 64Cu2+. Chem. 2013, 52 (9), 5246 - 5259. https://doi.org/10.1021/ic400174r.
| | - Guillou, A.; Lima, L. M. P.; Roger, M.; Esteban‐Gómez, D.; Delgado, R.; Platas‐Iglesias, C.; Patinec, V.; Tripier, R. 1,4,7‐Triazacyclononane‐Based Bifunctional Picolinate Ligands for Efficient Copper Complexation. Eur. J. Inorg. Chem. 2017, 2017 (18), 2435 - 2443. https://doi.org/10.1002/ejic.201700176.
| - Désogère, P.; Rousselin, Y.; Poty, S.; Bernhard, C.; Goze, C.; Boschetti, F.; Denat, F. Efficient Synthesis of 1,4,7‐Triazacyclononane and 1,4,7‐Triazacyclononane‐Based Bifunctional Chelators for Bioconjugation. Eur. J. Org. Chem. 2014, 2014 (35), 7831 - 7838. https://doi.org/10.1002/ejoc.201402708.
| - Shvydenko, T.; Nazarenko, K.; Shvydenko, K.; Boron, S.; Gutov, O.; Tolmachev, A.; Kostyuk, A. Reduction of Imidazolium Salts – An Approach to Diazocines and Diazocanes. Tetrahedron 2017, 73 (49), 6942 - 6953. https://doi.org/10.1016/j.tet.2017.10.053.
| - Heidelberger, C.; Guggisberg, A.; Stephanon, E.; Hesse, M. Amidine Als Zwischenprodukte Bei Umamidierungsreaktionen. 9. Mitteilung Über Umamidierungsreaktionen. Helv. Chim. Acta 1981, 64 (2), 399 - 406. https://doi.org/10.1002/hlca.19810640205.
| - Hyde, A. M.; Calabria, R.; Arvary, R.; Wang, X.; Klapars, A. Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]Undec-7-Ene and Related Unsaturated Nitrogenous Bases. Org. Process Res. Dev. 2019, 23 (9), 1860 - 1871. https://doi.org/10.1021/acs.oprd.9b00187.
| - Shi, M.; Shen, Y.-M. A Novel Reaction of 1,8-Diazabicyclo[5.4.0]Undec-7-Ene (DBU) or 1,5-Diazabicyclo[4.3.0]Non-5-Ene (DBN) with Benzyl Halides in the Presence of Water. Helv. Chim. Acta 2002, 85 (5), 1355. https://doi.org/10.1002/1522-2675(200205)85:5<1355::AID-HLCA1355>3.0.CO;2-M.
| - Yamamoto, H.; Maruoka, K. Regioselective Carbonyl Amination Using Diisobutylaluminum Hydride. J. Am. Chem. Soc. 1981, 103 (14), 4186 - 4194. https://doi.org/10.1021/ja00404a035.
| - Croker, S. J.; Loeffler, R. S. T.; Smith, T. A.; Sessions, B. 1,5-Diazabicyclo[4.3.0.]Nonane, the Oxidation Product of Spermine. Tetrahedron Lett. 1983, 24 (14), 1559 - 1560. https://doi.org/10.1016/S0040-4039(00)81709-8.
| - Alder, R. W.; Heilbronner, E.; Honegger, E.; McEwen, A. B.; Moss, R. E.; Olefirowicz, E.; Petillo, P. A.; Sessions, R. B.; Weisman, G. R. The out,out to out,in Transition for 1,(n+2)-Diazabicyclo[n.3.1]Alkanes. J. Am. Chem. Soc. 1993, 115 (15), 6580 - 6591. https://doi.org/10.1021/ja00068a015.
| - Bergmann, D. J.; Campi, E. M.; Roy Jackson, W.; Patti, A. F. High Yields of Diazabicycloalkanes and Oxazabicycloalkanes Containing Medium and Large Rings from Rhodium-Catalysed Hydroformylation Reactions without the Need for High Dilution Conditions. Chem. Comm. 1999, 14, 1279 - 1280. https://doi.org/10.1039/a903638e.
| - Bergmann, D. J.; Campi, E. M.; Jackson, W. R.; Patti, A. F. A Hydroformylation Route to Diazabicycloalkanes and Oxazabicycloalkanes Containing Medium and Large Rings. Aust. J. Chem. 1999, 52 (12), 1131. https://doi.org/10.1071/CH99097.
| - Alder, R. W.; Eastment, P.; Moss, R. E.; Sessions, R. B.; Stringfellow, M. A. Synthesis of Medium-Ring Bicyclic Bridgehead Diamines from Monocyclic Diamines via α-Aminoammonium Ions. Tetrahedron Lett. 1982, 23 (40), 4181 - 4184. https://doi.org/10.1016/S0040-4039(00)88382-3.
| - Shvidenko, T.; Nazarenko, K.; Shvidenko, K.; Kostyuk, A. A Convenient Synthesis of Benzannelated Diazacycloalkanes by Reductive Cleavage of 1,2-Polymethylenebenzimidazoles. Tetrahedron Lett. 2014, 55 (1), 279 - 281. https://doi.org/10.1016/j.tetlet.2013.11.025.
| - Alder, R. W. Medium-ring bicyclic compounds and intrabridgehead chemistry. Acc. Chem. Res. 1983, 16 (9), 321-327. https://doi.org/10.1021/ar00093a002.
| - Alder, R. W. Intrabrigehead Chemistry. Tetrahedron 1990, 46 (3), 683 - 713. https://doi.org/10.1016/S0040-4020(01)81354-5.
| - Alder, R. W.; Sessions, R. B. Synthesis of Medium-Ring Bicyclic Diamines by the Alkylation and Cleavage of Cyclic Amidines. Tetrahedron Lett. 1982, 23 (10), 1121 - 1124. https://doi.org/10.1016/S0040-4039(00)87038-0.
| - Weisman, G. R.; Vachon, D. J.; Johnson, V. B.; Gronbeck, D. A. Selective N-Protection of Medium-Ring Triamines. J. Chem. Soc., Chem. Commun. 1987, 12, 886. https://doi.org/10.1039/c39870000886.
| - Alder, R. W.; Mowlam, R. W.; Vachon, D. J.; Weisman, G. R. New Synthetic Routes to Macrocyclic Triamines. J. Chem. Soc., Chem. Commun. 1992, 6, 507. https://doi.org/10.1039/c39920000507.
| - Alder, R. W.; Carniero, T. M. G.; Mowlam, R. W.; Orpen, A. G.; Petillo, P. A.; Vachon, D. J.; Weisman, G. R.; White, J. M. Evidence for Hydrogen-Bond Enhanced Structural Anomeric Effects from the Protonation of Two Aminals, 5-Methyl-1,5,9-Triazabicyclo[7.3.1]Tridecane and 1,4,8,11-Tetraazatricyclo[9.3.1.1 4,8]Hexadecane. J. Chem. Soc., Perkin Trans. 2 1999, 3, 1 - 12. https://doi.org/10.1039/a807954d.
| - Hubsch-Weber, P.; Youinou, M.-T. Synthesis and Characterization of a New Series of [12]aneN3 Type Macrocycles. Structures of Two Protonated Metal-Free Ligands. Tetrahedron Lett. 1997, 38 (11), 1911 - 1914. https://doi.org/10.1016/S0040-4039(97)00241-4.
| - Pidwell, A. D.; Collinson, S. R.; Bruce, D. W.; Coles, S. J.; Hursthouse, M. B.; Schröder, M. The Synthesis and Properties of Surfactant Aza Macrocycles. Chem. Commun. 2000, 11, 955 - 956. https://doi.org/10.1039/b003368p.
| - Medina-Molner, A.; Spingler, B. When Two Metal Centres are Needed Instead of One: Exclusive Induction of Z-DNA by Dinuclear Metal Complexes. Chem. Commun. 2012, 48 (14), 1961 - 1963. https://doi.org/10.1039/C2CC16483C.
| | - Guo, Z.-F.; Yan, H.; Li, Z.-F.; Lu, Z.-L. Synthesis of Mono- and Di-[12]aneN3 Ligands and Study on the Catalytic Cleavage of RNA Model 2-Hydroxypropyl-p-Nitrophenyl Phosphate with Their Metal Complexes. Org. Biomol. Chem. 2011, 9 (19), 6788. https://doi.org/10.1039/c1ob05942d.
| | - Medina-Molner, A.; Blacque, O.; Spingler, B. The Synthesis of 1,2-Bis(1,5,9-Triazacyclododecyl)Ethane: A Showcase for the Importance of the Linker Length within Bis(Alkylating) Reagents. Org. Lett. 2007, 9 (23), 4829 - 4831. https://doi.org/10.1021/ol7021627.
| | - Gao, Y.-G.; Alam, U.; Ding, A.-X.; Tang, Q.; Tan, Z.-L.; Shi, Y.-D.; Lu, Z.-L.; Qian, A.-R. [12]aneN3-Based Lipid with Naphthalimide Moiety for Enhanced Gene Transfection Efficiency. Bioorg. Chem. 2018, 79, 334 - 340. https://doi.org/10.1016/j.bioorg.2018.04.018.
| | - Jones, D. G.; Wilson, K. R.; Cannon-Smith, D. J.; Shircliff, A. D.; Zhang, Z.; Chen, Z.; Prior, T. J.; Yin, G.; Hubin, T. J. Synthesis, Structural Studies, and Oxidation Catalysis of the Late-First-Row-Transition-Metal Complexes of a 2-Pyridylmethyl Pendant-Armed Ethylene Cross-Bridged Cyclam. Inorg. Chem. 2015, 54 (5), 2221-2234. https://doi.org/10.1021/ic502699m.
| | - Weisman, G. R.; Wong, E. H.; Hill, D. C.; Rogers, M. E.; Reed, D. P.; Calabrese, J. C. Synthesis and Transition-Metal Complexes of New Cross-Bridged Tetraamine Ligands. Chem. Commun. 1996, 8, 947. https://doi.org/10.1039/cc9960000947.
| - Silversides, J. D.; Smith, R.; Archibald, S. J. Challenges in Chelating Positron Emitting Copper Isotopes: Tailored Synthesis of Unsymmetric Chelators to Form Ultra Stable Complexes. Dalton Trans. 2011, 40 (23), 6289. https://doi.org/10.1039/c0dt01395a.
| | - Abdulwahaab, B. H.; Burke, B. P.; Domarkas, J.; Silversides, J. D.; Prior, T. J.; Archibald, S. J. Mono- and Bis-Alkylation of Glyoxal-Bridged Tetraazamacrocycles Using Mechanochemistry. J. Org. Chem. 2016, 81 (3), 890 - 898. https://doi.org/10.1021/acs.joc.5b02464.
| | - Di Mauro, G.; Annunziata, A.; Cucciolito, M. E.; Lega, M.; Resta, S.; Tuzi, A.; Ruffo, F. N,N′-Diethyl and N-Ethyl,N′-Methyl Glyoxal-Bridged Cyclams: Synthesis, Characterization, and Bleaching Activities of the Corresponding Mn(II) Complexes. Transition Met. Chem. 2017, 42 (5), 427 - 433. https://doi.org/10.1007/s11243-017-0146-8.
| - Annunziata, A.; Esposito, R.; Gatto, G.; Cucciolito, M. E.; Tuzi, A.; Macchioni, A.; Ruffo, F. Iron(III) Complexes with Cross‐Bridged Cyclams: Synthesis and Use in Alcohol and Water Oxidation Catalysis. Eur. J. Inorg. Chem. 2018, 2018 (28), 3304 - 3311. https://doi.org/10.1002/ejic.201800451.
| - Hermann, P.; Kotek, J.; Kubíček, V. 14.11 - Ten-Membered Rings or Lager With One or More Nitrogen Atoms. In Comprehensive Heterocyclic Chemistry IV, Black, D. S.; Cossy, J.; Stevens, C. V., Eds. Elsevier: Oxford, 2022; pp 591-683. https://doi.org/10.1016/B978-0-12-818655-8.00128-1.
| - Weisman, G. R.; Rogers, M. E.; Wong, E. H.; Jasinski, J. P.; Paight, E. S. Cross-Bridged Cyclam. Protonation and Lithium Cation (Li+) Complexation in a Diamond-Lattice Cleft. J. Am. Chem. Soc. 1990, 112 (23), 8604 - 8605. https://doi.org/10.1021/ja00179a067.
| - Wong, E. H.; Weisman, G. R.; Hill, D. C.; Reed, D. P.; Rogers, M. E.; Condon, J. S.; Fagan, M. A.; Calabrese, J. C.; Lam, K.-C.; Guzei, I. A.; Rheingold, A. L. Synthesis and Characterization of Cross-Bridged Cyclams and Pendant-Armed Derivatives and Structural Studies of Their Copper(II) Complexes. J. Am. Chem. Soc. 2000, 122 (43), 10561 - 10572. https://doi.org/10.1021/ja001295j.
| - Lewis, E. A.; Boyle, R. W.; Archibald, S. J. Ultrastable Complexes for in Vivo Use: A Bifunctional Chelator Incorporating a Cross-Bridged Macrocycle. Chem. Commun. 2004, 19, 2212. https://doi.org/10.1039/b406906d.
| | - Khan, A.; Silversides, J. D.; Madden, L.; Greenman, J.; Archibald, S. J. Fluorescent CXCR4 Chemokine Receptor Antagonists: Metal Activated Binding. Chem. Commun. 2007, 4, 416 - 418. https://doi.org/10.1039/B614557D.
| | - Odendaal, A. Y.; Fiamengo, A. L.; Ferdani, R.; Wadas, T. J.; Hill, D. C.; Peng, Y.; Heroux, K. J.; Golen, J. A.; Rheingold, A. L.; Anderson, C. J.; Weisman, G. R.; Wong, E. H. Isomeric Trimethylene and Ethylene Pendant-Armed Cross-Bridged Tetraazamacrocycles and in vitro / in vivo Comparisions of Their Copper(II) Complexes. Inorg. Chem. 2011, 50 (7), 3078 - 3086. https://doi.org/10.1021/ic200014w.
| | - Aeberli, P.; Houlihan, W. J. Lithium Aluminum Hydride Reduction Products from Heterocycles Containing an Isoindolone Nucleus. J. Org. Chem. 1969, 34 (6), 1720 - 1726. https://doi.org/10.1021/jo01258a042.
- Sulkowski, T. S.; Wille, M. A.; Mascitti, A. A.; Diebold, J. L. 2,5-Benzodiazocines and Intermediates. J. Org. Chem. 1967, 32 (7), 2180 - 2184. https://doi.org/10.1021/jo01282a022.
| | - Wasserman, H. H.; Matsuyama, H.; Robinson, R. P. β-Lactams as Building Blocks in the Synthesis of Macrocyclic Spermine and Spermidine Alkaloids. Tetrahedron 2002, 58 (35), 7177 - 7190. https://doi.org/10.1016/S0040-4020(02)00731-7.
| - Wasserman, H. H.; Matsuyama, H. Total Synthesis of (±)-Dihydroperiphylline. J. Am. Chem. Soc. 1981, 103 (2), 461 - 462. https://doi.org/10.1021/ja00392a036.
| - Wasserman, H. H.; Brunner, R. K.; Buynak, J. D.; Carter, C. G.; Oku, T.; Robinson, R. P. Total Synthesis of (±)-O-Methylorantine. J. Am. Chem. Soc. 1985, 107 (2), 519 - 521. https://doi.org/10.1021/ja00288a050.
| - Matsuyama, H.; Kobayashi, M.; H. Wasserman, H. Studies on the Synthesis of Optically Active Azalactams. Heterocycles 1987, 26 (1), 85. https://doi.org/10.3987/R-1987-01-0085.
| - Kuehne, P.; Linden, A.; Hesse, M. Asymmetric Synthesis of the Alkaloids Mayfoline and N(1)‐acetyl‐N(1)‐deoxymayfoline. Helv. Chim. Acta 1996, 79 (4), 1085 - 1094. https://doi.org/10.1002/hlca.19960790417.
| - Matsuyama, H.; Kurosawa, A.; Takei, T.; Ohira, N.; Yoshida, M.; Iyoda, M. Synthesis of Polyamine Alkaloids by the Condensation of a Chiral β-Lactam with a Cyclic Imino Ether. (S)-Dihydroperiphylline and Its Derivatives. Chem. Lett. 2000, 29 (9), 1104 - 1105. https://doi.org/10.1246/cl.2000.1104.
| - Wasserman, H. H.; Robinson, R. P.; Matsuyama, H. Transamidation Reactions in the Formation of Macrocyclic Lactams. A Total Synthesis of Celacinnine. Tetrahedron Lett. 1980, 21 (36), 3493 - 3496. https://doi.org/10.1016/S0040-4039(00)78723-5.
| - Lysenko, V.; Shvydenko, K.; Nazarenko, K.; Shishkina, S.; Rusanov, E.; Kostyuk, A. Convenient Approach to 10‐ and 11‐Membered Azalactams. Eur. J. Org. Chem. 2023, 26 (17). https://doi.org/10.1002/ejoc.202300142.
| - Lysenko, V.; Nazarenko, K.; Shishkina, S.; Kostyuk, A. Reductive Cleavage of Annulated 5,6-Dihydro-2H-1,2,4-Thiadiazine-1,1-Dioxides: Medium Sized Ring Azasultams. Chem. Commun. 2023, 59 (61), 9396 - 9399. https://doi.org/10.1039/D3CC02849F.
| |
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).