Chemical warfare agents: Structure, properties, decontamination (part 1)
DOI:
https://doi.org/10.24959/ophcj.24.312459Keywords:
chemical warfare agents, nerve agents, vesicants, decontamination, detection, protectionAbstract
The review is aimed at summarizing and systematizing information on various methods of deactivation of chemical warfare agents required on the battlefield, in laboratories, research institutions, production facilities, as well as information on storage and destruction of poisonous substances. The review provides data on warfare poisons with different tactical and physiological characteristics and outlines the main directions of their neutralization, which are the most effective under the conditions of their real use. In the first part of this review, the methods of deactivation of warfare poisonous substances using functionalized metal-organic framework materials, on which reactions of their transformation into low-toxic products take place, are considered in detail. In addition, metal-organic frameworks are porous crystalline structures that have many areas of application and can be used as adsorbents and catalysts. The above material shows the importance of general knowledge about the physical and chemical properties of chemical warfare agents, the rate of their decomposition, the advantages and disadvantages of certain available technologies for their application. This review can be useful for finding new and improving known methods of decontamination of chemical warfare agents and other ecotoxicants, for environmental protection.
Supporting Agency
- Grant of the Ukrainian National Academy of Sciences 6.2/2-2023.
Downloads
References
- Ganesan, K.; Raza, S.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. BioAllied Sci. 2010, 2 (3), 166–178. https://doi.org/10.4103/0975-7406.68498.
| - Yang, Y. C.; Baker, J. A.; Ward, J. R. Decontamination of Chemical Warfare Agents. Chem. Rev.1992, 92 (8), 1729–1743. https://doi.org/10.1021/cr00016a003.
| - Ploskonka, A. M.; De Coste, J. B. Insight into Organophosphate Chemical Warfare Agent Simulant Hydrolysis in Metal-Organic Frameworks. J. Hazard. Mater. 2019, 375, 191–197. https://doi.org/10.1016/j.jhazmat.2019.04.044.
| | - Chauhan, S.; Chauhan, S.; D’Cruz, R.; Faruqi, S.; Singh, K. K.; Varma, S.; Singh, M.; Karthik, V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008, 26, 113–122. https://doi.org/10.1016/j.etap.2008.03.003.
| | - Senyurt, E. I.; Schoenitz, M.; Dreizin, E. L. Rapid destruction of sarin surrogates by gas phase reactions with focus on diisopropyl methylphosphonate (DIMP). Def. Technol. 2021, 17 (6), 703–714. https://doi.org/10.1016/j.dt.2020.06.008.
| - Kinnear, A. M.; Perren, E. A. Formation of Organo-Phosphorus Compounds by the Reaction of Alkyl Chlorides with Phosphorus Trichloride in the Presence of Aluminium Chloride. J. Chem. Soc. 1952, 74, 3437–3445. https://doi.org/10.1039/JR9520003437.
- Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111 (9), 5345–5403. https://doi.org/10.1021/cr100193y.
| | - Cassagne, T.; Cristau, H.-J.; Delmas, G.; Desgranges, M.; Lion, C.; Magnaud, G.; Torreilles, É.; Virieux, D. Destruction of Chemical Warfare Agents VX and Soman by α-Nucleophiles as Oxidizing Agents. Heteroat. Chem. 2001, 12 (6), 485 – 490. https://doi.org/10.1002/hc.1074.
| - Manufacture of organic phosphorus compounds containing sulfur. Patent GB1346409A 13.02.1974.
- Saladi, R. N.; Smith, E.; Persaud, A. N. Mustard: a potential agent of chemical warfare and terrorism. Clinical and Experimental Dermatology 2006, 31 (1), 1-5. https://doi.org/10.1111/j.1365-2230.2005.01945.x.
| | - Popiel, S.; Witkiewicz, Z.; Chrzanowski, M. Sulfur mustard destruction using ozone, UV, hydrogen peroxide and their combination. J. Hazard. Mater. 2008, 153 (1-2), 37–43. https://doi.org/10.1016/j.jhazmat.2007.08.041.
| | - Boronin, A. M.; Ermakova, I. T.; Sakharovsky, V. G.; Grechkina, G. M.; Starovoitov, I. I.; Autenrieth, R. L.; Wild, J. R. Ecologically safe destruction of the detoxification products of mustard–lewisite mixtures from the Russian chemical stockpile. J. Chem. Technol. Biotechnol. 2000, 75 (1), 82-88. https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<82::AID-JCTB178>3.0.CO;2-M.
| - Seto, Y. Decontamination of chemical and biological warfare agents. Yakugaku Zasshi 2009, 129 (1), 53–69. https://doi.org/10.1248/yakushi.129.53.
| | - Talmage, S.; Watson, A.; Hauschild, V.; Munro, N.; King, J. Chemical Warfare Agent Degradation and Decontamination. Current Org. Chem. 2007, 11 (3), 285–298. https://doi.org/10.2174/138527207779940892.
| - Capoun, T.; Krykorkova, J. Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents. Toxics 2014, 2 (2), 307–326. https://doi.org/10.3390/toxics2020307.
| - Wagner, G. W.; Yang, Y.-Ch. Rapid nucleophilic/oxidative decontamination of chemical warfare agents. Ind. Eng. Chem. Res. 2002, 41, 1925–1928. https://doi.org/10.1021/ie010732f.
| - Suh, P. M.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 782–835. https://doi.org/10.1021/cr200274s.
| | - Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. https://doi.org/10.1126/science.1067208.
| | - Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112 (2), 869–932. https://doi.org/10.1021/cr200190s.
| | - Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 724–781. https://doi.org/10.1021/cr2003272.
| | - Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 1126–1162. https://doi.org/10.1021/cr200101d.
| | - Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105–1125. https://doi.org/10.1021/cr200324t.
| | - Song, F.; Wang, C.; Lin, W. A chiral metal-organic framework for sequential asymmetric catalysis. Chem. Comm. 2011, 47 (29), 8256–8258. https://doi.org/10.1039/C1CC12701B.
| | - Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9 (2), 172–178. https://doi.org/10.1038/nmat2608.
| | - Bobbitt, N. S.; Mendonca, M. L.; Howarth, A. J.; Islamoglu, T.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 2017, 46 (11), 3357–3385. https://doi.org/10.1039/C7CS00108H.
| | - Lavoie, J.; Srinivasan, S.; Nagarajan, R. Using cheminformatics to find simulants for chemical warfare agents. J. Hazard. Mat. 2011, 194, 85–91. https://doi.org/10.1016/j.jhazmat.2011.07.077.
| | - Ko, Y.; Bae, E. J.; K Chitale, S.; Soares, C. V.; Leitão, A. A.; Kim, M.-K.; Chang, J.-S.; Maurin, G.; Ryu, S. G.; Lee, U. H. Washable and Reusable Zr-Metal–Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents. ACS Appl. Nano Mater. 2022, 5 (7), 9657-9665. https://doi.org/10.1021/acsanm.2c01895.
| - Eubanks, L. M.; Dickerson, T. J.; Janda, K. D. Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem. Soc. Rev. 2007, 36, 458–470. https://doi.org/10.1039/B615227A.
| | - Katz, M. J.; Mondloch, J. E.; Totten, R. K.; Park, J. K.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T. Simple and Compelling Biomimetic Metal–Organic Framework Catalyst for the Degradation of Nerve Agent Simulants. Angew. Chem. Int. Ed. 2014, 53 (2), 497-501. https://doi.org/10.1002/anie.201307520.
| | - Imran, M.; Singh, V. V.; Garg, P.; Mazumder, A.; Pandey, L. K.; Sharma, P. K.; Acharya, J.; Ganesan, K. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH)4@W-ACF functional material for the development of next generation NBC protective gears. Sci. Rep. 2021, 11 (1), 24421. https://doi.org/10.1038/s41598-021-03786-8.
| | - Kim, T.; Maity, S. B.; Boufard, J.; Kim, Y. Molecular rotors for the detection of chemical warfare agent simulants. Anal. Chem. 2016, 88 (18), 9259–9263. https://doi.org/10.1021/acs.analchem.6b02516.
| | - Zhang, L.; Zhou, Q.; Liu, J.; Chang, N.; Wan, L.; Chen, J. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chem. Eng. J. 2012, 185-186, 160-167. https://doi.org/10.1016/j.cej.2012.01.066.
| - Jeon, S.; Balow, R. B.; Daniels, G. C.; Ko, J. S.; Pehrsson, P. E. Conformal Nanoscale Zirconium Hydroxide Films for Decomposing Chemical Warfare Agents. ACS Applied Nano Materials 2019, 2 (4), 2295-2307. https://doi.org/10.1021/acsanm.9b00194.
| - Balow, R. B.; McEntee, M.; Schweigert, I. V.; Jeon, S.; Peterson, G. W.; Pehrsson, P. Battling Chemical Weapons with Zirconium Hydroxide Nanoparticle Sorbent: Impact of Environmental Contaminants on Sarin Sequestration and Decomposition. Langmuir 2021, 37 (23), 6923-6934. https://doi.org/10.1021/acs.langmuir.1c00380.
| | - Shen, Z.; Zhong, J.-Y.; Yang, J.-C.; Cui, Y.; Zheng, H.; Wang, L.-Y.; Wang, J.-L. Decontamination of Chemical Warfare Agents by Zn2+ and Ge4+ co-doped TiO2 nanocrystals at sub-zero temperatures: A solid-state NMR and GC study. Chem. Phys. Lett. 2018, 707, 31-39. https://doi.org/10.1016/j.cplett.2018.07.033.
| - Štengl, V.; Bludská, J.; Opluštil, F.; Němec, T. Mesoporous titanium–manganese dioxide for sulphur mustard and soman decontamination. Mater. Res. Bull. 2011, 46 (11), 2050-2056. https://doi.org/10.1016/j.materresbull.2011.07.003.
| - Panayotov, D. A.; Morris, J. R. Catalytic Degradation of a Chemical Warfare Agent Simulant: Reaction Mechanisms on TiO2-Supported Au Nanoparticles. J. Phys. Chem. C 2008, 112 (19), 7496-7502. https://doi.org/10.1021/jp7118668.
| - Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Top. Catal. 2007, 44 (1), 15-26. https://doi.org/10.1007/s11244-007-0335-3.
| - Smith, B. M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev. 2008, 37 (3), 470-478. https://doi.org/10.1039/B705025A.
| | - Mondloch, J. E.; Katz, M. J.; Isley Iii, W. C.; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W.; Snurr, R. Q.; Cramer, C. J.; Hupp, J. T.; Farha, O. K. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 2015, 14, 512–516. https://doi.org/10.1038/nmat4238.
| | - Phadatare, A.; Kandasubramanian, B. Metal Organic Framework Functionalized Fabrics for Detoxification of Chemical Warfare Agents. Ind. Eng. Chem. Res. 2020, 59 (2), 569-586. https://doi.org/10.1021/acs.iecr.9b06695.
| - Kwon, W.; Kim, C.; Kim, J.; Kim, J.; Jeong, E. Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents. Polymers 2020, 12 (12), 2861. https://doi.org/10.3390/polym12122861.
| |
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).