Multigram Synthesis of 2-Azabicyclo[2.1.1]hexane-1-Carboxylates (2,4-Methanoprolines) – Promising Bicyclic Proline Analogs

Authors

DOI:

https://doi.org/10.24959/ophcj.24.314843

Keywords:

bicyclic compounds, building blocks, proline analog, bridged pyrrolidine, amino acid

Abstract

An optimized approach towards 4-substituted 2,4-methanoproline derivatives is reported. Careful selection of the starting materials and optimized isolation procedure provided easy access to a key bicyclic building block in a preparative yield of 32% over five laboratory steps of up to 0.7 kg. Further modifications allowed us to obtain a number of useful derivatives, including those containing NH2, COOH, CH2NH2, and CH2F fragments with orthogonally protected functionalities.

Supporting Agency

  • This work was supported by Enamine Ltd. O. O. Grygorenko received additional funding from the Ministry of Education and Science of Ukraine, grant No. 0122U001962 (22BF037-02).

Downloads

Download data is not yet available.

References

  1. Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52 (21), 6752 - 6756. https://doi.org/10.1021/jm901241e.
    | |
  2. Hamilton, D.J.; Dekker, T.; Klein, H. F.; Janssen, G. V.; Wijtmans, M.; O’Brien, P.; de Esch, I.J.P. Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries. Drug Discov. Today: Technologies 2020, 38, 77 - 90. https://doi.org/10.1016/J.DDTEC.2021.05.001.
    | |
  3. Cox, B.; Zdorichenko, V.; Cox, P. B.; Booker-Milburn, K. I.; Paumier, R.; Elliott, L. D.; Robertson-Ralph, M.; Bloomfield, G. Escaping from Flatland: Substituted bridged pyrrolidine fragments with inherent three-dimensional character. ACS Med. Chem. Lett. 2020, 11 (6), 1185 - 1190. https://doi.org/10.1021/acsmedchemlett.0c00039.
    | |
  4. Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Two- and three-dimensional rings in drugs. Chem. Biol. Drug Des. 2014, 83, 450 - 461. https://doi.org/10.1111/cbdd.12260.
    | |
  5. Cox, B.; Booker-Milburn, K. I.; Elliott, L. D., Robertson-Ralph, M.; Zdorichenko, V. Escaping from flatland: [2+2] photocycloaddition; conformationally constrained sp3-rich scaffolds for lead generation. ACS Med. Chem. Lett. 2019, 10 (11), 1512 - 1517. https://doi.org/10.1021/acsmedchemlett.9b00409.
    | |
  6. Degorce, S. L.; Bodnarchuk, M. S.; Cumming, I. A.; Scott, J. S. Lowering lipophilicity by adding carbon: One-carbon bridges of morpholines and piperazines. J. Med. Chem. 2018, 61 (19), 8934 - 8943. https://doi.org/10.1021/acs.jmedchem.8b01148.
    | |
  7. Smyrnov, O.; Melnykov, K. P.; Semeno, V.; Liashuk, O. S.; Grygorenko, O. O. α-CF3-Substituted saturated bicyclic amines: Advanced building blocks for medicinal chemistry. Eur. J. Org. Chem. 2024, 27 (1), e202300935. https://doi.org/10.1002/ejoc.202300935.
    |
  8. Meanwell, N. A. Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 2023, 71 (47), 18087 - 18122. https://doi.org/10.1021/acs.jafc.3c00765.
    | |
  9. Clemons, P. A.; Bodycombe, N. E.; Carrinski, H. A.; Wilson, J. A.; Shamji, A. F.; Wagner, B. K.; Koehler, A. N.; Schreiber, S. L. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (44), 18787 - 18792. https://doi.org/10.1073/pnas.1012741107.
    | |
  10. Krzyzanowski, A.; Pahl, A.; Grigalunas, M.; Waldmann, H. Spacial score – a comprehensive topological indicator for small-molecule complexity. J. Med. Chem. 2023, 66 (18), 12739 - 12750. https://doi.org/10.1021/acs.jmedchem.3c00689.
    | |
  11. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 2019, 17 (11) 2839 - 2849. https://doi.org/10.1039/C8OB02812E.
    | |
  12. Liu, J.; Han, J.; Izawa, K.; Sato, T.; White, S.; Meanwell, N. A.; Soloshonok, V. A. Cyclic tailor-made amino acids in the design of modern pharmaceuticals, Eur. J. Med. Chem. 2020, 208, 112736. https://doi.org/10.1016/j.ejmech.2020.112736.
    | |
  13. Boulton, D. W. Clinical Pharmacokinetics and Pharmacodynamics of Saxagliptin, a Dipeptidyl Peptidase-4 Inhibitor. Clin. Pharmacokinet. 2017, 56 (1), 11 - 24. https://doi.org/10.1007/s40262-016-0421-4.
    | |
  14. Reaxys® Database; https://www.reaxys.com/ (accessed on 03 Jun 2024).
  15. Bell, E. A.; Qureshi, M. Y.; Pryce, R. J., Janzen, D. H.; Lemke, P.; Clardy, J. 2,4-Methanoproline (2-carboxy-2,4-methanopyrrolidine) and 2,4-methanoglutamic acid (1-amino-1,3-dicarboxycyclobutane) in seeds of Ateleia herbert smithii Pittier (Leguminosae). J. Am. Chem. Soc. 1980, 102 (4), 1409 - 1412. https://doi.org/10.1021/ja00524a029.
    |
  16. Kite, G. C.; Ireland, H., Non-protein amino acids of Bocoa (Leguminosae; Papilionoideae). Phytochem. 2002, 59 (2), 163 - 168. https://doi.org/10.1016/S0031-9422(01)00447-2.
    | |
  17. Montelione, G. T.; Hughes, P.; Clardy, J.; Scheraga, H. A. Conformational properties of 2,4-methanoproline (2-carboxy-2,4-methanopyrrolidine) in peptides: determination of preferred peptide bond conformation in aqueous solution by proton Overhauser measurements. J. Am. Chem. Soc. 1986, 108 (21), 6765 - 6773. https://doi.org/10.1021/ja00281a051.
    |
  18. Piela, L.; Nemethy, G.; Scheraga, H. A. Conformational properties of 2,4-methanoproline (2-carboxy-2,4-methanopyrrolidine) in peptides: theoretical conformational energy analysis of restrictions of the polypeptide chain conformation. J. Am. Chem. Soc. 1987, 109 (15), 4477 - 4485. https://doi.org/10.1021/ja00249a009.
    |
  19. Mykhailiuk, P. K.; Kubyshkin, V.; Bach, T.; Budisa, N. Peptidyl-prolyl model study: How does the electronic effect influence the amide bond conformation? J. Org. Chem. 2017, 82 (17), 8831 - 8841. https://doi.org/10.1021/acs.joc.7b00803.
    | |
  20. Juvvadi, P.; Dooley, D. J.; Humblet, C. C.; Lu, G. H.; Lunney, E. A.; Panek, R. L.; Skeean, R.; Marshall, G. R. Bradykinin and angiotensin II analogs containing a conformationally constrained proline analog. Int. J. Pept. Protein Res. 1992, 40 (3 - 4), 163 - 170. https://doi.org/10.1111/j.1399-3011.1992.tb00289.x.
    | |
  21. Mapelli, C.; Halbeek, H. Van; Stammer, C. H. Synthesis and conformational studies by 1H‐ and 13C‐NMR spectroscopy of a novel, sterically constrained analogue of thyrotropin‐releasing hormone. Biopolymers 1990, 29 (2), 407 - 422. https://doi.org/10.1002/bip.360290212.
    | |
  22. Cox, B.; Duffy, J.; Zdorichenko, V.; Bellanger, C.; Hurcum, J.; Laleu, B.; Booker-Milburn, K. I.; Elliott, L. D.; Robertson-Ralph, M.; Swain, C. J., Bishop, S. J.; Hallyburton, I.; Anderson, M. Escaping from flatland: antimalarial activity of sp3-rich bridged pyrrolidine derivatives. ACS Med. Chem. Lett. 2020, 11 (12), 2497 - 2503. https://doi.org/10.1021/acsmedchemlett.0c00486.
    | |
  23. Patel, A. B.; Malpass, J. R. Potential nicotinic acetylcholine receptor ligands from 2,4-methanoproline derivatives. J. Med. Chem. 2008, 51 (21), 7005 - 7009. https://doi.org/10.1021/jm800537a.
    | |
  24. Esslinger, C. S.; Koch, H. P.; Kavanaugh, M. P.; Philips, D. P.; Chamberlin, A. R.; Thompson, C. M.; Bridges, R. J. Structural determinants of substrates and inhibitors: probing glutamate transporters with 2,4-methanopyrroldidine-2,4-dicarboxylate. Bioorg. Med. Chem. Lett. 1998, 8 (21), 3101 - 3106. https://doi.org/10.1016/S0960-894X(98)00560-5.
    | |
  25. Levterov, V. V; Michurin, O.; Borysko, P. O.; Zozulya, S.; Sadkova, I. V; Tolmachev, A. A.; Mykhailiuk, P. K. Photochemical in-flow synthesis of 2,4-methanopyrrolidines: pyrrolidine analogues with improved water solubility and reduced lipophilicity. J. Org. Chem. 2018, 83 (23), 14350 - 14361. https://doi.org/10.1021/acs.joc.8b02071.
    | |
  26. Krow, G. R.; Herzon, S. B.; Lin, G.; Qiu, F.; Sonnet, P. E. Complex-induced proximity effects. Temperature-dependent regiochemical diversity in lithiation−electrophilic substitution reactions of N-Boc-2-azabicyclo[2.1.1]hexane. 2,4- and 3,5-Methanoprolines. Org. Lett. 2002, 4 (18), 3151 - 3154. https://doi.org/10.1021/ol026509b.
    | |
  27. Grygorenko, O. O.; Artamonov, O. S.; Palamarchuk, G. V; Zubatyuk, R. I.; Shishkin, O. V; Komarov, I. V Stereoselective synthesis of 2,4-methanoproline homologues. Tetrahedron: Asymmetry 2006, 17 (2), 252 - 258. https://doi.org/10.1016/j.tetasy.2005.12.009.
    |
  28. Homon, A. A.; Hryshchuk, O. V.; Mykhailenko, O. V.; Vashchenko, B. V.; Melnykov, K. P.; Michurin, O. M.; Daniliuc, C. G.; Gerus, I. I.; Kovtunenko, V. O.; Kondratov, I. S.; Grygorenko, O. O. 4-(Di-/Trifluoromethyl)-2-heterabicyclo[2.1.1]hexanes: Advanced fluorinated phenyl isosteres and proline analogues. Eur. J. Org. Chem. 2021, 2021 (47), 6580 - 6590. https://doi.org/10.1002/ejoc.202100414.
    |
  29. Vasiuta, R. I.; Gorichko, M. V Synthesis of 4-hydroxymethyl-2,4-methanoproline. Tetrahedron Lett. 2014, 55 (2), 466 - 468. https://doi.org/10.1016/j.tetlet.2013.11.062.
    |
  30. Holovach, S.; Melnykov, K. P.; Skreminskiy, A.; Herasymchuk, M.; Tavlui, O.; Aloshyn, D.; Borysko, P.; Rozhenko, A.B.; Ryabukhin, S. V; Volochnyuk, D. M.; Grygorenko, O. O. Effect of gem-difluorination on the key physicochemical properties relevant to medicinal chemistry: the case of functionalized cycloalkanes. Chem. Eur. J. 2022, 28 (19), e202200331. https://doi.org/10.1002/chem.202200331.
    | |
  31. Nair, A. S.; Singh, A. K.; Kumar, A.; Kumar, S.; Sukumaran, S.; Koyiparambath, V. P.; Pappachen, L. K.; Rangarajan, T. M.; Kim, H., Mathew, B. FDA-approved trifluoromethyl group-containing drugs: A review of 20 years. Processes 2022, 10 (10), 2054. 1 https://doi.org/10.3390/pr10102054.
    |
  32. Han, J.; Remete, A. M.; Dobson, L. S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V. A.; O’Hagan, D. Next generation organofluorine containing blockbuster drugs. J. Fluor. Chem. 2020, 239, 109639. https://doi.org/10.1016/j.jfluchem.2020.109639.
    |
  33. der Born, D. Van; Pees, A.; Poot, A .J.; Orru, R. V. A., Windhorst, A. D.; Vugts, D. J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev. 2017, 46 (15), 4709 - 4773. https://doi.org/10.1039/C6CS00492J.
    | |
  34. Shah, P.; Westwell, A. D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. and Med. Chem. 2007, 22 (5), 527 - 540. https://doi.org/10.1080/14756360701425014.
    | |
  35. Henary, E.; Casa, S.; Dost, T. L.; Sloop, J. C.; Henary, M. The role of small molecules containing fluorine atoms in medicine and imaging applications. Pharmaceuticals 2024, 17 (3). https://doi.org/10.3390/ph17030281.
    | |
  36. L’heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; Laflamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. Aminodifluorosulfinium salts: selective fluorination reagents with enhanced thermal stability and ease of handling. J. Org. Chem. 2010, 75 (10), 3401 - 11. https://doi.org/10.1021/jo100504x.
    | |
  37. Mohammadkhani, L.; Heravi, M. M. XtalFluor-E: A useful and versatile reagent in organic transformations. J. Fluorine Chem. 2019, 225, 11 - 20. https://doi.org/10.1016/J.JFLUCHEM.2019.06.006.
    |
  38. Karabatsos, G. J.; Graham, J. D. Carbonium ion rearrangement of the neopentyl system. J. Am. Chem. Soc. 1960, 82 (19), 5250 - 5251. https://doi.org/10.1021/ja01504a063.
  39. Scriven, E.; Turnbull, K. Azides: their preparation and synthetic uses. Chem. Rev. 1988, 88(2), 297 - 368. https://doi.org/10.1021/cr00084a001.
    |
  40. Corey, E. J.; Link, J. O. A general, catalytic, and enantioselective synthesis of α-amino acids. J. Am. Chem. Soc. 1992, 114 (5), 1906 - 1908. https://doi.org/10.1021/ja00031a069.
    |
  41. Carlsen, P.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J. Org. Chem. 1981, 46 (19), 3936 - 3938. https://doi.org/10.1021/jo00332a045.
    |
  42. Conti, P.; Caligiuri, A.; Pinto, A.; Roda, G.; Tamborini, L.; Nielsen, B.; Madsen, U.; Frydenvang, K.; Colombo, A.; De Micheli, C. Synthesis and pharmacological evaluation of novel conformationally constrained homologues of glutamic acid. Eur. J. Med. Chem. 2007, 42 (8), 1059 - 1068. https://doi.org/10.1016/j.ejmech.2007.01.013.
    | |
  43. Koch, H. P., Kavanaugh, M. P.; Esslinger, C. S.; Zerangue, N.; Humphrey, J. M.; Amara, S. G.; Chamberlin, A. R.; Bridges, R. J. Differentiation of Substrate and Nonsubstrate Inhibitors of the High-Affinity, Sodium-Dependent Glutamate Transporters. Mol. Pharmacol. 1999, 56 (6), 1095 - 1104. https://doi.org/10.1124/mol.56.6.1095.
    | |
  44. Armarego, W. L. F. Purification of Laboratory Chemicals, 9th ed.; Butterworth-Heinemann: Elsevier 2022 ISBN 978-0-12-805457-4
  45. Cochrane, W. P.; Pauson, P. L.; Stevens, T. S. Synthesis of 3-oxabicyclo[3.1.1]heptanes by rearrangement of 3-oxaspiro[3.3]heptanes. J. Chem. Soc., C: Organic 1969, 18, 2346. https://doi.org/10.1039/j39690002346.

Downloads

Additional Files

Published

2024-12-27

How to Cite

(1)
Chernykh, A. V.; Liashuk, O. S.; Hurieva, A. M.; Volochnyuk, D. M.; Grygorenko, O. O. Multigram Synthesis of 2-Azabicyclo[2.1.1]hexane-1-Carboxylates (2,4-Methanoprolines) – Promising Bicyclic Proline Analogs. J. Org. Pharm. Chem. 2024, 22, 24-37.

Issue

Section

Advanced Researches