The Oxidation of Cyclic Ketones by H2O2 Catalyzed by Cu(II) and Fe(III) Coordination Polymers
DOI:
https://doi.org/10.24959/ophcj.24.315358Keywords:
catalytic oxidation, cyclic ketones, hydrogen peroxide, porous coordination polymers, copper(II), iron(III)Abstract
It has been shown that the oxidation of ketones – analogs of cyclohexanone – by hydrogen peroxide in the presence of Cu3(btc)2 (btc3- = 1,3,5-benzenetricarboxylate) occurred mainly by the radical mechanism, rather than by the Baeyer-Villiger reaction mechanism, and led to a mixture of products formed due to the ring cleavage and reduction of the hydrocarbon chain length. Unlike aliphatic ketones, α-tetralone hardly underwent conversion in the reaction with H2O2 in the presence of HKUST-1, and the oxidation of the same ketone in the presence of Fe2(OH)3(btc) led to the formation of a number of products; among them, 1,4-naphthoquinone was dominant.
Supporting Agency
- The authors received no specific funding for this work.
Downloads
References
- Valange, S.; Vedrine, J. C. General and Prospective Views on Oxidation Reactions in Heterogeneous Catalysis. Catalysts 2018, 8 (10), 483. https://doi.org/10.3390/catal8100483.
|
- Trusau, K. I.; Kirillova, M. V.; André, V. A.; Usevich, I.; Kirillov, A. M. Mild Oxidative Functionalization of Cycloalkanes Catalyzed by Novel Dicopper(II) Cores. Mol. Catal. 2021, 503, 111401. https://doi.org/10.1016/j.mcat.2021.111401.
|
- Tereshchenko, O. D.; Perebiynis, M. Y.; Knysh, I. V.; Vasylets, O. V.; Sorochenko, A. A.; Slobodyanyuk, E. Y.; Rusanov, E. B.; Borysov, O. V.; Kolotilov, S. V.; Ryabukhin, S. V.; Volochnyuk, D. M. Electrochemical Scaled-up Synthesis of Cyclic Enecarbamates as Starting Materials for Medicinal Chemistry Relevant Building Blocks. Adv. Synth. Catal. 2020, 362 (15), 3229–3242. https://doi.org/10.1002/adsc.202000450.
|
- Strukul, G.; Scarso, A. Metal-Catalyzed Baeyer-Villiger Oxidations. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, Third Edition; B. Cornils, WA Herrmann, M. Beller, R. Paciello Eds., Wiley - VCH Verlag GmbH & Co. KGaA, 2018, Chapter 29, pp 1485-1508. https://doi.org/10.1002/9783527651733.ch29.
- Michelina, R. A.; Sgarbossa, P.; Scarso, A.; Strukul. G. The Baeyer – Villiger Oxidation of Ketones: A Paradigm for the Role of Soft Lewis Acidity in Homogeneous Catalysis. Coord. Chem. Rev. 2010, 254 (5-6), 646-660. https://doi.org/10.1016/j.ccr.2009.09.014.
|
- González-Núñez, M. E.; Mello, R.; Olmos, A.; Acerete, R.; Asensio, G. Oxidation of Alcohols to Carbonyl Compounds with CrO3·SiO2 in Supercritical Carbon Dioxide. J. Org. Chem. 2006, 71 (3), 1039-1042. https://doi.org/10.1021/jo052137j.
|
|
- Bridges, L.; Mohamed, R. A. M.; Khan, N. A.; Brusseau, M. L.; Carroll, K. C. Comparison of Manganese Dioxide and Permanganate as Amendments with Persulfate for Aqueous 1,4-Dioxane Oxidation. Water 2020, 12 (11), 3061. https://doi.org/10.3390/w12113061.
|
- Fujii, H.; Ogawa, R.; Jinbo, E.; Tsumura, S.; Nemoto, T.; Nagase, H. Novel Oxidation Reaction of Tertiary Amines with Osmium Tetroxide. Synlett 2009, 14, 2341 – 2345. https://doi.org/10.1055/s-0029-1217811.
|
- Guideline for elemental impurities (Doc. Ref. EMA/CHMP/ICH/353369/2013), Committee for Human Medicinal Products, European Medicines Agency, Amsterdam, 2019.
- Lee, J.; Lee, J. C. An Efficient Oxidation of Alcohols by Aqueous H2O2 with 1,3 – Dibromo – 5,5 – Dimethylhydantoin. Lett. Org. Chem. 2018, 15 (10), 895 – 898. https://doi.org/10.2174/1570178615666180613080548.
|
|
- Coelho, J. V.; Oliveira, L. C. A.; Moura, F. C. C.; de Souza, P. P.; Silva, C. A.; Batista, K. B.; da Silva, M. J. β - Pinene Oxidation by Hydrogen Peroxide Catalyzed by Modified Niobium – MCM. Applied Catal. A: General 2012, 419–420, 215 – 220. https://doi.org/10.1016/j.apcata.2012.01.032.
|
- Shul’pin, G. B.; Shul’pina, L. S. Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds. Catalysts 2021, 11 (2), 186. https://doi.org/10.3390/catal11020186.
|
- Lei, Z.; Ma, G.; Wei, L.; Yang, Q.; Su, B. Clean Baeyer–Villiger Oxidation Using Hydrogen Peroxide as Oxidant Catalyzed by Aluminium Trichloride in Ethanol. Catal. Lett. 2008, 124 (3-4), 330 – 333. https://doi.org/10.1007/s10562-008-9470-0.
|
- Ohno, R.; Taniya, K.; Tsuruya, S.; Ichihashi, Y.; Nishiyama, S. Oxidation of Cyclohexane with Hydrogen Peroxide Over Zeolites with Various Si/Al Ratios. Catal. Today 2013, 203, 60 – 65. https://doi.org/10.1016/j.cattod.2012.03.007.
|
- Uchida, T.; Katsuki, T. Cationic Co(III)(salen)–Catalyzed Enantioselective Baeyer–Villiger Oxidation of 3–Arylcyclobutanones Using Hydrogen Peroxide as a Terminal Oxidant. Tetrahedron Lett. 2001, 42 (39), 6911 – 6914. https://doi.org/10.1016/S0040-4039(01)01445-9.
|
- Xu, H.; Jiang, J.; Yang, B.; Wu, H.; Wu, P. Effective Baeyer – Villiger Oxidation of Ketones over Germanosilicates. Catal. Commun. 2014, 55, 83 – 86. https://doi.org/10.1016/j.catcom.2014.06.019.
|
- Ma, Q.; Xing, W.; Xu, J.; Peng, X. Baeyer–Villiger Oxidation of Cyclic Ketones with Aqueous Hydrogen Peroxide Catalyzed by Transition Metal Oxides. Catal. Commun. 2014, 53, 5 – 8. https://doi.org/10.1016/j.catcom.2014.04.017.
|
- Frisone, M. D. T.; Pinna, F.; Strukul, G. Baeyer-Villiger oxidation of cyclic ketones with hydrogen peroxide catalyzed by cationic complexes of platinum(II): selectivity properties and mechanistic studies. Organometallics 1993, 12 (1), 148 – 156. https://doi.org/10.1021/om00025a027.
|
- Granato, T.; Testa, F.; Olivo. R. Catalytic Activity of HKUST-1 Coated on Ceramic Foam. Micropor. Mesopor. Mater. 2012, 153, 236 – 246. https://doi.org/10.1016/j.micromeso.2011.12.055.
|
- Konnerth, H.; Matsagar, B. M. Chen, S. S.; Prechtl, M. H. G.; Shieh, F.- K.; Wu, K. C.-W. Metal – Organic Framework (MOF) – Derived Catalysts for Fine Chemical Production Coord. Chem. Rev. 2020, 416, 213319. https://doi.org/10.1016/j.ccr.2020.213319.
|
- Sotnik, S. A.; Gavrilenko, K. S.; Lytvynenko, A. S.; Kolotilov, S. V. Catalytic Activity of Copper(II) Benzenetricarboxylate (HKUST-1) in Reactions of Aromatic Aldehydes Condensation with Nitromethane: Kinetic and Diffusion Study. Inorg. Chim. Acta 2015, 426, 119–125. https://doi.org/10.1016/j.ica.2014.11.018.
|
- Lytvynenko, A. S.; Kolotilov, S. V.; Kiskin, M. A.; Cador, O.; Golhen, S.; Aleksandrov, G. G.; Mishura, A. M.; Titov, V. E.; Ouahab, L.; Eremenko, I. L.; Novotortsev, V. M. Redox-Active Porous Coordination Polymers Prepared by Trinuclear Heterometallic Pivalate Linking with the Redox-Active Nickel(II) Complex: Synthesis, Structure, Magnetic and Redox Properties, and Electrocatalytic Activity in Organic Compound Dehalogenation in Heterogeneous Medium. Inorg. Chem. 2014, 53 (10), 4970–4979. https://doi.org/10.1021/ic403167m.
|
|
- Yurchenko, D. V.; Lytvynenko, A. S.; Abdullayev, E. N.; Peregon, N. V.; Gavrilenko, K. S.; Gorlova, A. O.; Ryabukhin, S. V.; Volochnyuk, D. M.; Kolotilov, S. V. Catalytic oxidation of benzoins by hydrogen peroxide on nanosized HKUST-1: influence of substituents on the reaction rates and DFT modeling of the reaction path. Molecules 2023, 28 (2), 747. https://doi.org/10.3390/molecules28020747.
|
|
- Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of Adsorption Isotherms on Cu-BTC Metal Organic Frameworks Synthesized from Different Routes. Micropor. Mesopor. Mater. 2009, 117 (1 – 2), 406–413. https://doi.org/10.1016/j.micromeso.2008.07.029.
|
- Hu, X.; Lou, X.; Li, C.; Ning, Y.; Liao, Y.; Chen, Q.; Mananga, E. S.; Shen, M.; Hua, B. Facile Synthesis of the Basolite F300 – like Nanoscale Fe-BTC Framework and Its Lithium Storage Properties. RSC Adv. 2016, 6 (115), 114483 – 114490. https://doi.org/10.1039/C6RA22738D.
|
- Misono, M.; Ochiai, E.; Saito, Y.; Yoneda, Y. A New Dual Parameter Scale for the Strength of Lewis Acids and Bases with the Evaluation of their Softness. J. Inorg. Nucl. Chem. 1967, 29 (11), 2685 – 2691. https://doi.org/10.1016/0022-1902(67)80006-X
- Razavi, S. A. A.; Chen, W.; Zhou, H.- C.; Morsali, A. Tuning Redox Activity in Metal-Organic Frameworks: From Structure to Application. Coord. Chem. Rev. 2024, 517, 216004. https://doi.org/10.1016/j.ccr.2024.216004.
|
- Lagoshniak, D. A.; Mishura, A. M.; Kurmach, M. M.; Lytvynenko, A. S.; Grabovaya, N. V.; Gavrilenko, K. S.; Manoilenko, O. V.; Kolotilov, S. V. Influence of the Structures of the Carboxylate Porous Coordination Polymers as Stationary Phases for Liquid Chromatography on the Separation Efficiency of the Aniline Derivatives. Russ. J. Coord. Chem. 2020, 46 (7), 458 – 465. https://doi.org/10.1134/s1070328420070040.
|
- Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors 2009, 9, 1574-1589. https://doi.org/10.3390/s90301574.
|
|
- Schlichte, K.; Kratzke, T.; Kaskel, S. Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal – Organic Framework Compound Cu3(BTC)2 Micropor. Mesopor. Mater. 2004, 73 (1 – 2), 81 – 88. https://doi.org/10.1016/j.micromeso.2003.12.027.
|
- Torres, N.; Galicia, J.; Plasencia, Y.; Cano, A.; Echevarría, F.; Desdin-Garcia. L. F. Implications of Structural Differences between Cu-BTC and Fe-BTC on their Hydrogen Storage Capacity. Colloids Surf., A 2018, 549, 138 – 146. https://doi.org/10.1016/j.colsurfa.2018.04.016.
|
- Hamann, H. J.; Bunge, A.; Liebscher, J. Reaction of Epoxyketones with Hydrogen Peroxide – Ethane-1,1-dihydroperoxide as a Surprisingly Stable Product. Chem. Eur. J. 2008, 14 (23), 6849 – 6851. https://doi.org/10.1002/chem.200800932.
|
|
- Ros, D.; Gianferrara, T.; Crotti, C.; Farnetti, E. Iron-Catalyzed Oxidation of 1-Phenylethanol and Glycerol with Hydrogen Peroxide in Water Medium: Effect of the Nitrogen Ligand on Catalytic Activity and Selectivity. Front. Chem. 2020, 8 (810), 1 – 13. https://doi.org/10.3389/fchem.2020.00810.
|
|
- Li, X.; Cao, R.; Lin, Q. Solvent – Free Baeyer–Villiger Oxidation with H2O2 as Oxidant Catalyzed by Multi-SO3H Functionalized Heteropolyanion – Based Ionic Hybrids. Catal. Commun. 2015, 63, 79 – 83. https://doi.org/10.1016/j.catcom.2014.12.028.
|
- Cavani, F.; Raabova, K.; Bigi, F.; Quarantelli, C. A Rationale of the Baeyer–Villiger Oxidation of Cyclohexanone to ε-Caprolactone with Hydrogen Peroxide: Unprecedented Evidence for a Radical Mechanism Controlling Reactivity. Chem. Eur. J. 2010, 16 (43), 12962 – 12969. https://doi.org/10.1002/chem.201001777.
|
|
- Gorban, O.; Danilenko, I.; Nosolev, I.; Abdullayev, E.; Islamov, A.; Gavrilenko, K.; Doroshkevich, A.; Shvets, O.; Kolotilov, S. Impact of chemical and physical modification of zirconia on structure, surface state, and catalytic activity in oxidation of α-tetralol. J. Nanopart. Res., 2022, 24, 197. https://doi.org/10.1007/s11051-022-05566-5
|
- Bolm, C.; Schlingloff, G.; Weickhardt, K. Optically Active Lactones from a Baeyer–Villiger-Type Metal-Catalyzed Oxidation with Molecular Oxygen. Angew. Chem. Int. Ed. Engl. 1994, 33 (18), 1848–1849. https://doi.org/10.1002/anie.199418481.
|
- Duc, D. X.; Nguyet, N. T. Microwave – Assisted Claisen – Schmidt Condensation Between Arylmethyl Ketones and Aryl Aldehydes Catalyzed by Cu(OTf)2 under Solvent – Free Conditions: Synthesis of Chalcones. Vietnam J. Sci. Techn. 2020, 58 (6A), 1 – 9.
- Cao, Q.; Yin, Q.; Chen, Q.; Dong, Z. B.; Han, B. H. Fluorinated Porous Conjugated Polyporphyrins through Direct C−H Arylation Polycondensation: Preparation, Porosity, and Use as Heterogeneous Catalysts for Baeyer – Villiger Oxidation. Chem. Eur. J. 2017, 23 (41), 9831 – 9837. https://doi.org/10.1002/chem.201700916.
|
|
- Sun, J.; Zhu, Q.; Guo, X.; Jin, H.; He, G.; Ma, L.; Zhang, R.; Gu, Q.; Yang, S. Baeyer –Villiger Co – oxidation of Cyclohexanone with Fe – Sn – O Catalysts in an O2 / Benzaldehyde System. Green Process. Synth. 2021, 10 (1), 677 – 686. https://doi.org/10.1515/gps-2021-0045.
|
- Kawabata, T.; Ohishi, Y.; Itsuki, S.; Fujisaki, N.; Shishido, T.; Takaki, K.; Zhang, Q.; Wang, Y.; Takehira, K. Iron – containing MCM – 41 catalysts for Baeyer – Villiger oxidation of ketones using molecular oxygen and benzaldehyde. J. Mol. Catal. A: Chem. 2005, 236 (1 – 2), 99-106. https://doi.org/10.1016/j.molcata.2005.03.027.
|
- Chen, L.; Liu, Y.; Chi, J.; Xiong, W.; Liu, P.; Hao, F. A Highly Efficient Bifunctional Copper Catalyst for Baeyer–Villiger Oxidation of Cyclohexanone: Two Different Active Centers and the Reaction Path Investigation. Appl. Surf. Sci. 2023, 638 (158045). https://doi.org/10.1016/j.apsusc.2023.158045.
|
- Zhou, W.; Chen, Y.; Qian, J.; Sun, F.; He, M.; Chen, Q. Copper Tetrasulfophthalocyanine Intercalated Hydrotalcite as an Efficient Bifunctional Catalyst for the Baeyer–Villiger Oxidation. Catal. Lett. 2016, 146 (10), 2157 – 2164. https://doi.org/10.1007/s10562-016-1823-5.
|
- Moudjahed, M.; Dermeche, L.; Idrissou, Y.; Mazari, T.; Rabia, C. Dawson - Type Polyoxometalates as Green Catalysts for Adipic Acid Synthesis. J. Mol. Catal. A: Chem. 2016, 414, 72–77. https://doi.org/10.1016/j.molcata.2015.12.014.
|
- Mouanni, S.; Mazari, T.; Amitouche, D.; Benadji, S.; Dermeche, L.; Roch-Marchal, C.; Rabia, C. Preparation and Characterization of H3-2(x+y)MnxCoyPMo12O40 Heteropolysalts. Application to Adipic Acid Green Synthesis from Cyclohexanone Oxidation with Hydrogen Peroxide. Comptes Rendus Chimie 2019, 22, 327 – 336. https://doi.org/10.1016/j.crci.2019.01.003.
|
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 National University of Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).