Reevaluating ortho-Carborane Synthesis: Success with Mono-Substituted Acetylenes in the Presence of Silver Salts

Authors

DOI:

https://doi.org/10.24959/ophcj.24.316200

Keywords:

ortho-carborane, decaborane, acetylenes, silver, synthesis

Abstract

The study shows that traditional methods for synthesizing ortho-carboranes from nido-B10H14 and its complexes (B10H12L2) using donor- and acceptor-disubstituted acetylenes yielding low efficiencies (yields 0 - 12%). Attempts to improve yields with ionic liquids and silver salts as catalysts were unsuccessful with disubstituted acetylenes. However, it has been found that the use of mono-substituted acetylenes (phenylacetylene, ethyl propiolate) in the presence of silver salts in the reaction with B10H12L2 substrates produces ortho-carboranes in high yields (~90%). This suggests that the key step is the formation and subsequent addition of silver acetylenides, and not the donor-acceptor π-complexes previously assumed. This finding allows us to better understand the mechanisms of the ortho-carboranes formation and offers an efficient pathway for their synthesis.

Supporting Agency

  • The work was supported by National Research Foundation of Ukraine (grant No. 0123U104256).

Downloads

Download data is not yet available.

References

  1. Langmuir, I. Isomorphism, Isosterism and Covalence. J. Am. Chem. Soc. 2002, 41 (10), 1543 - 1559. https://doi.org/10.1021/ja02231a009.
  2. Meanwell, N. A. Applications of Bioisosteres in the Design of Biologically Active Compounds. J. Agric. Food Chem. 2023, 71 (47), 18087 - 18122. https://doi.org/10.1021/acs.jafc.3c00765.
    | |
  3. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 2019, 17 (11), 2839 - 2849. https://doi.org/10.1039/c8ob02812e.
    | |
  4. Valliant, J. F.; Guenther, K. J.; King, A. S.; Morel, P.; Schaffer, P.; Sogbein, O. O.; Stephenson, K. A. The medicinal chemistry of carboranes. Coord. Chem. Rev. 2002, 232 (1), 173 - 230. https://doi.org/10.1016/S0010-8545(02)00087-5.
    |
  5. Gruzdev, D. A.; Levit, G. L.; Krasnov, V. P.; Charushin, V. N. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coordination Chemistry Reviews 2021, 433, 213753. https://doi.org/10.1016/j.ccr.2020.213753.
    |
  6. Stockmann, P.; Gozzi, M.; Kuhnert, R.; Sarosi, M. B.; Hey-Hawkins, E. New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem Soc Rev 2019, 48 (13), 3497 - 3512. https://doi.org/10.1039/c9cs00197b.
    | |
  7. Emilia, O. Z.; Christian, A. M.; Mark, W. L., Jr. The Use of Carboranes in Cancer Drug Development. International Journal of Cancer and Clinical Research 2019, 6 (2). https://doi.org/10.23937/2378-3419/1410110.
  8. Nunez, R.; Tarres, M.; Ferrer-Ugalde, A.; de Biani, F. F.; Teixidor, F. Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chem. Rev. 2016, 116 (23), 14307 - 14378. https://doi.org/10.1021/acs.chemrev.6b00198.
    | |
  9. Dash, B. P.; Satapathy, R.; Maguire, J. A.; Hosmane, N. S. Polyhedral boron clusters in materials science. New Journal of Chemistry 2011, 35 (10), 1955 - 1972. https://doi.org/10.1039/c1nj20228f.
    |
  10. Wang, C.; Huang, F.; Jiang, Y.; Li, J.; Zhou, Y.; Du, L. Oxidation behavior of carbon materials derived from a carborane- and silicon-incorporated polymer. Ceram. Int. 2012, 38 (4), 3081 - 3088. https://doi.org/10.1016/j.ceramint.2011.12.007.
    |
  11. Keener, M.; Hunt, C.; Carroll, T. G.; Kampel, V.; Dobrovetsky, R.; Hayton, T. W.; Menard, G. Redox-switchable carboranes for uranium capture and release. Nature 2020, 577 (7792), 652 - 655. https://doi.org/10.1038/s41586-019-1926-4.
    | |
  12. Ditter, J. F.; Klusmann, E. B.; Oakes, J. D.; Williams, R. E. Direct synthesis of closo-carboranes. Inorganic Chemistry 2002, 9 (4), 889 - 892. https://doi.org/10.1021/ic50086a039.
    |
  13. Heying, T. L.; Ager, J. W.; Clark, S. L.; Alexander, R. P.; Papetti, S.; Reid, J. A.; Trotz, S. I. A New Series of Organoboranes. III. Some Reactions of 1,2-Dicarbaclovododecaborane(12) and its Derivatives. Inorganic Chemistry 2002, 2 (6), 1097 - 1105. https://doi.org/10.1021/ic50010a004.
  14. Beall, H. Icosahedral carboranes. XVII. Simplified preparation of o-carborane. Inorg. Chem. 2002, 11 (3), 637 - 638. https://doi.org/10.1021/ic50109a044.
    |
  15. Heying, T. L.; Ager, J. W.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. A New Series of Organoboranes. I. Carboranes from the Reaction of Decaborane with Acetylenic Compounds. Inorg. Chem. 2002, 2 (6), 1089 - 1092. https://doi.org/10.1021/ic50010a002.
  16. Toppino, A.; Genady, A. R.; El-Zaria, M. E.; Reeve, J.; Mostofian, F.; Kent, J.; Valliant, J. F. High yielding preparation of dicarba-closo-dodecaboranes using a silver(I) mediated dehydrogenative alkyne-insertion reaction. Inorg. Chem. 2013, 52 (15), 8743 - 8749. https://doi.org/10.1021/ic400928v.
    | |
  17. El-Zaria, M. E.; Keskar, K.; Genady, A. R.; Ioppolo, J. A.; McNulty, J.; Valliant, J. F. High yielding synthesis of carboranes under mild reaction conditions using a homogeneous silver(I) catalyst: direct evidence of a bimetallic intermediate. Angew. Chem. Int. Ed. 2014, 53 (20), 5156 - 5160. https://doi.org/10.1002/anie.201311012.
    | |
  18. Kusari, U.; Li, Y.; Bradley, M. G.; Sneddon, L. G. Polyborane reactions in ionic liquids: new efficient routes to functionalized decaborane and o-carborane clusters. J. Am. Chem. Soc. 2004, 126 (28), 8662 - 8663. https://doi.org/10.1021/ja048018n.
    | |
  19. Li, Y.; Carroll, P. J.; Sneddon, L. G. Ionic-liquid-promoted decaborane dehydrogenative alkyne-insertion reactions: a new route to o-carboranes. Inorg. Chem. 2008, 47 (20), 9193 - 202. https://doi.org/10.1021/ic800999y.
    | |
  20. Fein, M. M.; Grafstein, D.; Paustian, J. E.; Bobinski, J.; Lichstein, B. M.; Mayes, N.; Schwartz, N. N.; Cohen, M. S. Carboranes. II. The Preparation of 1- and 1,2-Substituted Carboranes. Inorg. Chem. 1963, 2 (6), 1115 - 1119. https://doi.org/10.1021/ic50010a008.
  21. Korshak, V. V.; Bekasova, N. I.; Solomatina, A. I.; Frunze, T. M.; Sakharova, A. A.; Mel'nik, O. A. Synthesis of unsaturated esters of m- and p-carboranedicarboxylic acids. Bulletin of the Academy of Sciences of the USSR, Division of chemical science 1982, 31 (8), 1694 - 1695. https://doi.org/10.1007/BF00956914.
    |
  22. Collin, D. E.; Kovacic, K.; Light, M. E.; Linclau, B. Synthesis of Ortho-Functionalized 1,4-Cubanedicarboxylate Derivatives through Photochemical Chlorocarbonylation. Org. Lett. 2021, 23 (13), 5164 - 5169. https://doi.org/10.1021/acs.orglett.1c01702.
    | |
  23. Smith, E.; Jones, K. D.; O'Brien, L.; Argent, S. P.; Salome, C.; Lefebvre, Q.; Valery, A.; Bocu, M.; Newton, G. N.; Lam, H. W. Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. J. Am. Chem. Soc. 2023, 145 (30), 16365 - 16373. https://doi.org/10.1021/jacs.3c03207.
    | |
  24. Smyrnov, O.; Melnykov, K.; Pashenko, O.; Volochnyuk, D.; Ryabukhin, S. Stellane at the Forefront: Derivatization and Reactivity Studies of a Promising Saturated Bioisostere of ortho‐Substituted Benzenes. 2024. https://doi.org/10.26434/chemrxiv-2024-rlf5q.
    | |
  25. Smyrnov, O. K.; Melnykov, K. P.; Rusanov, E. B.; Suikov, S. Y.; E, O.; Fokin, A. A.; Volochnyuk, D. M.; Ryabukhin, S. V. Multigram Synthesis of Dimethyl Stellane-1,5-Dicarboxylate as a Key Precursor for the ortho-Benzene Mimics. Chem. - Eur. J. 2023, e202302454. https://doi.org/10.1002/chem.202302454.
    | |
  26. Islam, S.; Johnson, F. A.; Hill, W. E.; Silva-Trivino, L. M. Kinetics of ortho-carborane formation revisited. Inorganica Chimica Acta 1997, 260 (1), 99 - 103. https://doi.org/10.1016/S0020-1693(96)05544-2.
    |

Downloads

Published

2024-12-27

How to Cite

(1)
Svaliavyn, O. V.; Mishchenko, A. M.; Lishchenko, Y. L.; Mityuk, A. P.; Cherednichenko, A. S.; Shtil, N. A.; Turcheniuk, V. V.; Smaliy, R. V.; Rassukana, Y. V.; Pashenko, O. Y. Reevaluating Ortho-Carborane Synthesis: Success With Mono-Substituted Acetylenes in the Presence of Silver Salts. J. Org. Pharm. Chem. 2024, 22, 38-45.

Issue

Section

Advanced Researches