High-Temperature Polymer Components Reimagined: Scalable Syntheses and de novo Routes to Structurally Versatile Precursors

Authors

  • Roman M. Kurganov Enamine Ltd; Institute of Organic Chemistry of the National Academy of Sciences of Ukraine; V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine , Ukraine
  • Oleh V. Svaliavyn Enamine Ltd; Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0009-0004-0692-691X
  • Yevgen O. Pashchenko V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0001-5545-5780
  • Denis O. Savchenko V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9474-3993
  • Alexander B. Rozhenko Enamine Ltd; Taras Shevchenko National University of Kyiv; Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-4022-7851
  • Serhiy V. Ryabukhin Enamine Ltd; Taras Shevchenko National University of Kyiv; Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-4281-8268
  • Dmitriy M. Volochnyuk Enamine Ltd; Taras Shevchenko National University of Kyiv; Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0001-6519-1467

DOI:

https://doi.org/10.24959/ophcj.24.317091

Keywords:

heat-resistant polymers, monomers, oligomers, curing agents, triazine, phthalonitrile, borosilane, diamine, synthesis

Abstract

Developing efficient and scalable synthetic protocols for key polymer precursors is crucial to advancing high-performance materials designed to withstand severe thermal environments. In this article, we report on the development of solid, high-yield methods for preparing structurally diverse building blocks, including s-triazine derivatives, phenyl-borosilane alkynyl oligomers, phthalonitrile-based monomers, and novel diamine curing agents on multi-gram to multi-hundred-gram scales. These carefully optimized procedures use readily available starting materials, mild conditions, and well-known synthetic transformations, thus addressing the longstanding challenges associated with their practical upscaling. The resulting library of monomers and oligomers offers a broad range of reactive functional groups (e.g., nitriles, alkynes, borosilane motifs), enabling future combinatorial-like strategies for the formation of advanced co-polymers with enhanced thermal stability, mechanical strength, and tunable properties suitable for high-temperature applications.

Supporting Agency

  • The work was supported by the Ministry of Education and Science of Ukraine (grant No. 1/РН/25-024).

Downloads

Download data is not yet available.

References

  1. Cassidy, P. E.; Aminabhavi, T. M.; Reddy, V. S. Heat‐Resistant Polymers. In Kirk-Othmer Encyclopedia of Chemical Technology, 2000.
  2. Mark, H. F. Encyclopedia of polymer science and technology, 15 volume set; Wiley New York, NY, USA, 2014.
  3. Kumar, D.; Gupta, A. D.; Khullar, M. Heat‐resistant thermosetting polymers based on a novel tetrakisaminophenoxycyclotriphosphazene. Journal of Polymer Science Part A: Polymer Chemistry 2003, 31 (11), 2739-2745. https://doi.org/10.1002/pola.1993.080311109.
    |
  4. Kumar, D.; Razdan, U.; Gupta, A. D. Heat-resistant polymers from melt-processable bisimido-bisphthalonitriles. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (3), 797-804. https://doi.org/10.1002/pola.1993.080310326.
    |
  5. Butt, M. S.; Akhtar, Z.; Zafar-uz-Zaman, M.; Munir, A. Synthesis and characterization of some novel aromatic polyimides. European Polymer Journal 2005, 41 (7), 1638-1646. https://doi.org/10.1016/j.eurpolymj.2005.01.016.
    |
  6. Hasegawa, M.; Hoshino, Y.; Katsura, N.; Ishii, J. Superheat-resistant polymers with low coefficients of thermal expansion. Polymer 2017, 111, 91-102. https://doi.org/10.1016/j.polymer.2017.01.028.
    |
  7. Krishnaraj, C.; Jena, H. S.; Leus, K.; Van Der Voort, P. Covalent triazine frameworks – a sustainable perspective. Green Chem. 2020, 22 (4), 1038-1071. https://doi.org/10.1039/c9gc03482j.
    |
  8. Zhou, H.; Zhou, Q.; Zhou, Q.; Ni, L.; Chen, Q. Highly heat resistant and thermo-oxidatively stable borosilane alkynyl hybrid polymers. RSC Adv. 2015, 5 (16), 12161-12167. https://doi.org/10.1039/c4ra14352c.
    |
  9. Inoue, K.; Nakamura, H.; Ariyoshi, S.; Takagi, M.; Tanigaki, T. Heat-resistant polymers prepared from [(4'-(2-vinyl)-4-biphenylyl)oxy]pentachlorocyclotriphosphazene. Macromolecules 2002, 22 (12), 4466-4469. https://doi.org/10.1021/ma00202a015.
    |
  10. Yu, G.; Liu, C.; Wang, J.; Li, X.; Jian, X. Heat-resistant aromatic S-triazine-containing ring-chain polymers based on bis(ether nitrile)s: Synthesis and properties. Polymer Degradation and Stability 2010, 95 (12), 2445-2452. https://doi.org/10.1016/j.polymdegradstab.2010.08.011.
    |
  11. Achar, B. N.; Fohlen, G. M.; Parker, J. A. Studies on heat-resistant thermosetting phthalocyanine polymers. Journal of Applied Polymer Science 1984, 29 (1), 353-359. https://doi.org/10.1002/app.1984.070290133.
    |
  12. Zhou, J.; Wang, J.; Jin, K.; Sun, J.; Fang, Q. s-Triazine-based functional monomers with thermocrosslinkable propargyl units: Synthesis and conversion to the heat-resistant polymers. Polymer 2016, 102, 301-307. https://doi.org/10.1016/j.polymer.2016.09.027.
    |
  13. Sastri, S. B.; Keller, T. M. Phthalonitrile polymers: Cure behavior and properties. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (13), 2105-2111. https://doi.org/10.1002/(sici)1099-0518(19990701)37:13<2105::aid-pola25>3.0.co;2-a.
    |
  14. Zhang, Y.; Huang, Y.; Liu, X.; Yu, Y. Studies on the silicone resins cured with polymethylsilazanes at ambient temperature. Journal of Applied Polymer Science 2003, 89 (6), 1702-1707. https://doi.org/10.1002/app.12433.
    |
  15. Takekoshi, T.; Terry, J. M. High-temperature thermoset polyimides containing disubstituted acetylene end groups. Polymer 1994, 35 (22), 4874-4880. https://doi.org/10.1016/0032-3861(94)90746-3.
    |
  16. Burchill, P. J. On the formation and properties of a high‐temperature resin from a bisphthalonitrile. Journal of Polymer Science Part A: Polymer Chemistry 2003, 32 (1), 1-8. https://doi.org/10.1002/pola.1994.080320101.
    |
  17. Seino, H.; Mochizuki, A.; Ueda, M. Synthesis of aliphatic polyimides containing adamantyl units. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (18), 3584-3590. https://doi.org/10.1002/(sici)1099-0518(19990915)37:18<3584::aid-pola5>3.0.co;2-r.
    |
  18. Woiczechowski-Pop, A.; Dobra, I. L.; Roiban, G. D.; Terec, A.; Grosu, I. Synthesis and Structural Analysis of Some Podands with C3 Symmetry. Synth. Commun. 2012, 42 (24), 3579-3588. https://doi.org/10.1080/00397911.2011.585732.
    |
  19. Mika, T. F.; Bauer, R. S. Curing agents and modifiers. In Epoxy resins, Routledge, 2018; pp 465-550.

Downloads

Published

2024-12-27

How to Cite

(1)
Kurganov, R. M.; Svaliavyn, O. V.; Pashchenko, Y. O.; Savchenko, D. O.; Rozhenko, A. B.; Ryabukhin, S. V.; Volochnyuk, D. M. High-Temperature Polymer Components Reimagined: Scalable Syntheses and De Novo Routes to Structurally Versatile Precursors. J. Org. Pharm. Chem. 2024, 22, 46-55.

Issue

Section

Advanced Researches