Balancing Physicochemical Properties between the Molecules of Mercy (Non-Addictive Drugs) and the Molecules of Mysticism (Often Addictive Drugs)

Authors

DOI:

https://doi.org/10.24959/ophcj.25.321860

Keywords:

CNS-drugs discovery, pain killers, mind-changers, physicochemical properties, therapeutic drugs

Abstract

The fundamental physicochemical features of drugs acting on the central nervous system (CNS) determine their ability to penetrate the blood-brain barrier (BBB) and be active against the CNS activities. In this paper, we study two well-known groups of drugs used or prescribed by physicists to treat CNS disorders. One group of drugs belongs to pain killers (the Molecules of Mercy), and the other group belongs to the mind-changers (the Molecules of Mysticism). These two groups of CNS drugs differ in a number of physicochemical parameters: molecular weight, lipophilicity, hydrogen bound acceptor count, hydrogen bond donor count, polar surface area, polarizability, flexibility, bioavailability, and their behavior (agreement or disagreement) related to specific structural conditions, in particular the Lipinski’s rule, Ghose filter, Veber’s rule, Multi-Drug Data Report (MDDR) criteria. In the study of 41 well-known drugs that affect the CNS (both approved or illegal), it has been found that painkillers that do not cause addiction have a physicochemical profile other than those of mind-changer drugs that are very often addictive. 

The features of physicochemical parameters associated with the profiles of “pain killer” and “mind-changer” drugs are discussed.

Supporting Agency

  • CNRS-Aix Marseille-University and Marseille Institute for Biology of Development (IBDM) are greatly acknowledged for the facilities offered and financial support.

Downloads

Download data is not yet available.

References

  1. Goodman, M.; Morehouse, F. Organic Molecules in Action; Gordon & Breach Publishing Group, 1973.
  2. Painkillers and Prostaglandins. Nat. Struct. Mol. Biol. 2003, 10 (4), 233. https://doi.org/10.1038/nsb0403-233.
    | |
  3. Kuteykin-Teplykanov K. Molecules of Mysticism: Pharmacology Meets Anthropology. Open foundation ICPR conference, October 24, 2010. Amsterdam University.
  4. Sanders, J. W.; Zijlmans, J. Moving Past Mysticism in Psychedelic Science. ACS Pharmacol. Transl. Sci. 2021, 4 (3), 1253–1255. https://doi.org/10.1021/acsptsci.1c00097.
    | |
  5. Pajouhesh, H.; Lenz, G. R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRX 2005, 2 (4), 541–553. https://doi.org/10.1602/neurorx.2.4.541.
    | |
  6. Rankovic, Z. CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J. Med. Chem. 2015, 58 (6), 2584–2608. https://doi.org/10.1021/jm501535r.
    | |
  7. Melzack, R.; Wall, P. D. Pain Mechanisms: A New Theory. Science 1965, 150 (3699), 971–978. https://doi.org/10.1126/science.150.3699.971.
    | |
  8. Uprety, R.; Che, T.; Zaidi, S. A.; Grinnell, S. G.; Varga, B. R.; Faouzi, A.; Slocum, S. T.; Allaoa, A.; Varadi, A.; Nelson, M.; Bernhard, S. M.; Kulko, E.; Le Rouzic, V.; Eans, S. O.; Simons, C. A.; Hunkele, A.; Subrath, J.; Pan, Y. X.; Javitch, J. A.; McLaughlin, J. P. Controlling Opioid Receptor Functional Selectivity by Targeting Distinct Subpockets of the Orthosteric Site. eLife 2021, 10. https://doi.org/10.7554/elife.56519.
    | |
  9. Yang, S.; Chang, M. C. Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int. J. Mol. Sci. 2019, 20 (13), 3130. https://doi.org/10.3390/ijms20133130.
    | |
  10. Nutt, D.; Spriggs, M.; Erritzoe, D. Psychedelics Therapeutics: What We Know, What We Think, and What We Need to Research. Neuropharmacology 2022, 223, 109257. https://doi.org/10.1016/j.neuropharm.2022.109257.
    | |
  11. Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46 (D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037.
    | |
  12. Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; John Wiley & Sons, 1979.
  13. Hansch, C.; Björkroth, J. P.; Leo, A. Hydrophobicity and Central Nervous System Agents: On the Principle of Minimal Hydrophobicity in Drug Design. J. Pharm. Sci. 1987, 76 (9), 663–687. https://doi.org/10.1002/jps.2600760902.
    | |
  14. Forrey, C.; Douglas, J. F.; Gilson, M. K. The Fundamental Role of Flexibility on the Strength of Molecular Binding. Soft Matter 2012, 8 (23), 6385. https://doi.org/10.1039/c2sm25160d.
    | |
  15. Davis, J. L. Pharmacologic Principles. Equine Internal Medicine 2018, 4, 79–137. https://doi.org/10.1016/b978-0-323-44329-6.00002-4.
  16. Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43 (20), 3714–3717. https://doi.org/10.1021/jm000942e.
    | |
  17. Hitchcock, S. A.; Pennington, L. D. Structure−Brain Exposure Relationships. J. Med. Chem. 2006, 49 (26), 7559–7583. https://doi.org/10.1021/jm060642i.
    | |
  18. Daintith, J. A Dictionary of Chemistry; Oxford University Press, 2008. https://doi.org/10.1093/acref/9780199204632.001.0001.
  19. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Delivery Rev. 1997, 23 (1-3), 3–25. https://doi.org/10.1016/s0169-409x(96)00423-1.
    |
  20. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 19991 (1), 55–68. https://doi.org/10.1021/cc9800071.
    | |
  21. Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45 (12), 2615–2623. https://doi.org/10.1021/jm020017n.
    | |
  22. Oprea, T. I. Property distribution of drug-related chemical databases. J. Comput.-Aided Mol. Des. 2000, 14 (3), 251–264. https://doi.org/10.1023/a:1008130001697.
    | |
  23. Schneider, G. Automating Drug Discovery. Nat. Rev. Drug Discovery 2017, 17 (2), 97–113. https://doi.org/10.1038/nrd.2017.232.
    | |

Downloads

Published

2025-05-05

How to Cite

(1)
Kraus, J.-L. Balancing Physicochemical Properties Between the Molecules of Mercy (Non-Addictive Drugs) and the Molecules of Mysticism (Often Addictive Drugs). J. Org. Pharm. Chem. 2025, 23, 3-10.

Issue

Section

Opinion