Optimization and Scaling up of the Azaindole Derivatives Synthesis

Authors

DOI:

https://doi.org/10.24959/ophcj.25.323307

Keywords:

azaindoles, Sonogashira coupling, Larock synthesis, carbonylation

Abstract

In this study, an optimized method for the synthesis of azaindoles was developed and successfully scaled up to a 100 g batch. Improved yields were observed when using electron-deficient azaheterocycles and substrates bearing electron-withdrawing substituents. 6-Chloro-1H-pyrrolo[3,2-c]pyridine was selected for further functionalization using a carbonylation protocol involving carbon monoxide. As a result, novel and promising building blocks for medicinal chemistry were obtained.

Supporting Agency

  • The author received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Zhao, S.-B.; Wang, S. Luminescence and Reactivity of 7-Azaindole Derivatives and Complexes. Chem. Soc. Rev. 2010, 39 (8), 3142. https://doi.org/10.1039/c001897j.
    | |
  2. Meanwell, N. A.; Krystal, M. R.; Nowicka-Sans, B.; Langley, D. R.; Conlon, D. A.; Eastgate, M. D.; Grasela, D. M.; Timmins, P.; Wang, T.; Kadow, J. F. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and Its Prodrug Fostemsavir. J. Med. Chem. 2018, 61 (1), 62–80. https://doi.org/10.1021/acs.jmedchem.7b01337.
    | |
  3. Shirude, P. S.; Shandil, R.; Sadler, C.; Naik, M.; Hosagrahara, V.; Hameed, S.; Shinde, V.; Bathula, C.; Humnabadkar, V.; Kumar, N.; Reddy, J.; Panduga, V.; Sharma, S.; Ambady, A.; Hegde, N.; Whiteaker, J.; McLaughlin, R. E.; Gardner, H.; Madhavapeddi, P.; Ramachandran, V.; Kaur, P.; Narayan, A.; Guptha, S.; Awasthy, D.; Narayan, C.; Mahadevaswamy, J.; Vishwas, K.; Ahuja, V.; Srivastava, A.; Prabhakar, K.; Bharath, S.; Kale, R.; Ramaiah, M.; Choudhury, N. R.; Sambandamurthy, V. K.; Solapure, S.; Iyer, P. S.; Narayanan, S.; Chatterji, M. Azaindoles: Noncovalent DprE1 Inhibitors from Scaffold Morphing Efforts, Kill Mycobacterium Tuberculosis and Are Efficacious in Vivo. J. Med. Chem. 2013, 56 (23), 9701–9708. https://doi.org/10.1021/jm401382v.
    | |
  4. Bandarage, U. K.; Cao, J.; Come, J. H.; Court, J. J.; Gao, H.; Jacobs, M. D.; Marhefka, C.; Nanthakumar, S.; Green, J. ROCK Inhibitors 3: Design, Synthesis and Structure-Activity Relationships of 7-Azaindole-Based Rho Kinase (ROCK) Inhibitors. Bioorganic & Medicinal Chemistry Letters 2018, 28 (15), 2622–2626. https://doi.org/10.1016/j.bmcl.2018.06.040.
    | |
  5. Ballesteros-Garrido, R. Recent Developments in the Synthesis of 4-, 5-, 6- and 7-Azaindoles. In Advances in Heterocyclic Chemistry; Elsevier, 2023; Vol. 140, pp 67–123. https://doi.org/10.1016/bs.aihch.2023.01.001.
    |
  6. Motati, D. R.; Amaradhi, R.; Ganesh, T. Recent Developments in the Synthesis of Azaindoles from Pyridine and Pyrrole Building Blocks. Org. Chem. Front. 2021, 8 (3), 466–513. https://doi.org/10.1039/D0QO01079K.
    |
  7. Leboho, T. C.; Giri, S.; Popova, I.; Cock, I.; Michael, J. P.; De Koning, C. B. Double Sonogashira Reactions on Dihalogenated Aminopyridines for the Assembly of an Array of 7-Azaindoles Bearing Triazole and Quinoxaline Substituents at C-5: Inhibitory Bioactivity against Giardia Duodenalis Trophozoites. Bioorganic & Medicinal Chemistry 2015, 23 (15), 4943–4951. https://doi.org/10.1016/j.bmc.2015.05.024.
    | |
  8. Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J. B. Transition Metal Catalyzed Synthesis of 5-Azaindoles. Tetrahedron Letters 1998, 39 (29), 5159–5162. https://doi.org/10.1016/S0040-4039(98)00986-1.
    |
  9. Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Synthesis of Polyfunctional Indoles and Related Heterocycles Mediated by Cesium and Potassium Bases. Tetrahedron 2003, 59 (9), 1571–1587. https://doi.org/10.1016/S0040-4020(03)00073-5.
    |
  10. Sun, L.; Wang, J. Facile Synthesis of 2‐Substituted 4‐Azaindoles. Synthetic Communications 2007, 37 (13), 2187–2193. https://doi.org/10.1080/00397910701397359.
    |
  11. Barl, N. M.; Sansiaume‐Dagousset, E.; Karaghiosoff, K.; Knochel, P. Full Functionalization of the 7‐Azaindole Scaffold by Selective Metalation and Sulfoxide/Magnesium Exchange. Angew Chem Int Ed 2013, 52 (38), 10093–10096. https://doi.org/10.1002/anie.201303490.
    | |
  12. Hopkins, C. R.; Collar, N. 6-Substituted-5H-Pyrrolo[2,3-b]Pyrazines via Palladium-Catalyzed Heteroannulation from N-(3-Chloropyrazin-2-Yl)-Methanesulfonamide and Alkynes. Tetrahedron Letters 2004, 45 (43), 8087–8090. https://doi.org/10.1016/j.tetlet.2004.08.155.
    |
  13. Azimov, V. A.; Bychikhina, N. N.; Polezhaeva, A. I.; Mashkovskii, M. D.; Yakhontov, L. N. Synthesis and Pharmacologic Study of 6-Amino Derivatives of 5-Azaindoline. Pharm Chem J 1980, 14 (5), 308–313. https://doi.org/10.1007/BF00777399.
  14. Zhang, Z.; Yang, Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. A General Method for the Preparation of 4- and 6-Azaindoles. J. Org. Chem. 2002, 67 (7), 2345–2347. https://doi.org/10.1021/jo0111614.
    | |
  15. Subota, A. I.; Volochnyuk, D. M.; Gorlova, A. O.; Grygorenko, O. O. Scalable Synthesis and Properties of 7-Methyl- 4-Azaindole. Heterocyclic Communications 2017, 23 (6), 449–453. https://doi.org/10.1515/hc-2017-0180.
    |
  16. Le, P. T.; Richardson, P. F.; Sach, N. W.; Xin, S.; Ren, S.; Xiao, J.; Xue, L. Development of a Scalable Synthesis of 4-Aminopyrimidin-5-Ol, a Versatile Intermediate. Org. Process Res. Dev. 2015, 19 (6), 639–645. https://doi.org/10.1021/acs.oprd.5b00074.
    |
  17. Paudler, W. W.; Jovanovic, M. V. Bromination of Some Pyridine and Diazine N-Oxides. J. Org. Chem. 1983, 48 (7), 1064–1069. https://doi.org/10.1021/jo00155a027.
    |
  18. Minzong Li; Konteatis Z.; Chen Y.; Zhou S.; Ma G.; Gross S.; Marjon K.; Hyer M.; Mandley E.; Lein M.; Padyana A.; Jin L.; Tong S.; Peters R.; Murtie J.; Travins J.; Medeiros M.; Liu P.; Victoria-Frank; Judd E.; Biller S.; Marks K.; Sui Z.; Reznik S. Leveraging Structure-Based Drug Design to IdentifyNext-Generation MAT2A Inhibitors, Including Brain-Penetrant and Peripherally Efficacious Leads. . Med. Chem.2022, 65, 6, 4600–4615. https://doi.org/10.1021/acs.jmedchem.1c01595
    | |
  19. Biot, N.; Romito, D.; Bonifazi, D. Substituent-Controlled Tailoring of Chalcogen-Bonded Supramolecular Nanoribbons in the Solid State. Crystal Growth & Design 2021, 21 (1), 536–543. https://doi.org/10.1021/acs.cgd.0c01318.
    | |
  20. Chessari, G.; Buck, I. M.; Day, J. E. H.; Day, P. J.; Iqbal, A.; Johnson, C. N.; Lewis, E. J.; Martins, V.; Miller, D.; Reader, M.; Rees, D. C.; Rich, S. J.; Tamanini, E.; Vitorino, M.; Ward, G. A.; Williams, P. A.; Williams, G.; Wilsher, N. E.; Woolford, A. J.-A. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. J. Med. Chem. 2015, 58 (16), 6574–6588. https://doi.org/10.1021/acs.jmedchem.5b00706.
    | |
  21. Hanan, E. J.; Eigenbrot, C.; Bryan, M. C.; Burdick, D. J.; Chan, B. K.; Chen, Y.; Dotson, J.; Heald, R. A.; Jackson, P. S.; La, H.; Lainchbury, M. D.; Malek, S.; Purkey, H. E.; Schaefer, G.; Schmidt, S.; Seward, E. M.; Sideris, S.; Tam, C.; Wang, S.; Yeap, S. K.; Yen, I.; Yin, J.; Yu, C.; Zilberleyb, I.; Heffron, T. P. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation. J. Med. Chem. 2014, 57 (23), 10176–10191. https://doi.org/10.1021/jm501578n.
    | |

Downloads

Additional Files

Published

2025-11-21

How to Cite

(1)
Kordubailo, M. V.; Tolmachev, A. A. Optimization and Scaling up of the Azaindole Derivatives Synthesis. J. Org. Pharm. Chem. 2025, 23, 4-10.

Issue

Section

Original Researches