Optimization and Scaling up of the Azaindole Derivatives Synthesis
DOI:
https://doi.org/10.24959/ophcj.25.323307Keywords:
azaindoles, Sonogashira coupling, Larock synthesis, carbonylationAbstract
In this study, an optimized method for the synthesis of azaindoles was developed and successfully scaled up to a 100 g batch. Improved yields were observed when using electron-deficient azaheterocycles and substrates bearing electron-withdrawing substituents. 6-Chloro-1H-pyrrolo[3,2-c]pyridine was selected for further functionalization using a carbonylation protocol involving carbon monoxide. As a result, novel and promising building blocks for medicinal chemistry were obtained.
Supporting Agency
- The author received no specific funding for this work.
Downloads
References
- Zhao, S.-B.; Wang, S. Luminescence and Reactivity of 7-Azaindole Derivatives and Complexes. Chem. Soc. Rev. 2010, 39 (8), 3142. https://doi.org/10.1039/c001897j.
|
|
- Meanwell, N. A.; Krystal, M. R.; Nowicka-Sans, B.; Langley, D. R.; Conlon, D. A.; Eastgate, M. D.; Grasela, D. M.; Timmins, P.; Wang, T.; Kadow, J. F. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and Its Prodrug Fostemsavir. J. Med. Chem. 2018, 61 (1), 62–80. https://doi.org/10.1021/acs.jmedchem.7b01337.
|
|
- Shirude, P. S.; Shandil, R.; Sadler, C.; Naik, M.; Hosagrahara, V.; Hameed, S.; Shinde, V.; Bathula, C.; Humnabadkar, V.; Kumar, N.; Reddy, J.; Panduga, V.; Sharma, S.; Ambady, A.; Hegde, N.; Whiteaker, J.; McLaughlin, R. E.; Gardner, H.; Madhavapeddi, P.; Ramachandran, V.; Kaur, P.; Narayan, A.; Guptha, S.; Awasthy, D.; Narayan, C.; Mahadevaswamy, J.; Vishwas, K.; Ahuja, V.; Srivastava, A.; Prabhakar, K.; Bharath, S.; Kale, R.; Ramaiah, M.; Choudhury, N. R.; Sambandamurthy, V. K.; Solapure, S.; Iyer, P. S.; Narayanan, S.; Chatterji, M. Azaindoles: Noncovalent DprE1 Inhibitors from Scaffold Morphing Efforts, Kill Mycobacterium Tuberculosis and Are Efficacious in Vivo. J. Med. Chem. 2013, 56 (23), 9701–9708. https://doi.org/10.1021/jm401382v.
|
|
- Bandarage, U. K.; Cao, J.; Come, J. H.; Court, J. J.; Gao, H.; Jacobs, M. D.; Marhefka, C.; Nanthakumar, S.; Green, J. ROCK Inhibitors 3: Design, Synthesis and Structure-Activity Relationships of 7-Azaindole-Based Rho Kinase (ROCK) Inhibitors. Bioorganic & Medicinal Chemistry Letters 2018, 28 (15), 2622–2626. https://doi.org/10.1016/j.bmcl.2018.06.040.
|
|
- Ballesteros-Garrido, R. Recent Developments in the Synthesis of 4-, 5-, 6- and 7-Azaindoles. In Advances in Heterocyclic Chemistry; Elsevier, 2023; Vol. 140, pp 67–123. https://doi.org/10.1016/bs.aihch.2023.01.001.
|
- Motati, D. R.; Amaradhi, R.; Ganesh, T. Recent Developments in the Synthesis of Azaindoles from Pyridine and Pyrrole Building Blocks. Org. Chem. Front. 2021, 8 (3), 466–513. https://doi.org/10.1039/D0QO01079K.
|
- Leboho, T. C.; Giri, S.; Popova, I.; Cock, I.; Michael, J. P.; De Koning, C. B. Double Sonogashira Reactions on Dihalogenated Aminopyridines for the Assembly of an Array of 7-Azaindoles Bearing Triazole and Quinoxaline Substituents at C-5: Inhibitory Bioactivity against Giardia Duodenalis Trophozoites. Bioorganic & Medicinal Chemistry 2015, 23 (15), 4943–4951. https://doi.org/10.1016/j.bmc.2015.05.024.
|
|
- Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J. B. Transition Metal Catalyzed Synthesis of 5-Azaindoles. Tetrahedron Letters 1998, 39 (29), 5159–5162. https://doi.org/10.1016/S0040-4039(98)00986-1.
|
- Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Synthesis of Polyfunctional Indoles and Related Heterocycles Mediated by Cesium and Potassium Bases. Tetrahedron 2003, 59 (9), 1571–1587. https://doi.org/10.1016/S0040-4020(03)00073-5.
|
- Sun, L.; Wang, J. Facile Synthesis of 2‐Substituted 4‐Azaindoles. Synthetic Communications 2007, 37 (13), 2187–2193. https://doi.org/10.1080/00397910701397359.
|
- Barl, N. M.; Sansiaume‐Dagousset, E.; Karaghiosoff, K.; Knochel, P. Full Functionalization of the 7‐Azaindole Scaffold by Selective Metalation and Sulfoxide/Magnesium Exchange. Angew Chem Int Ed 2013, 52 (38), 10093–10096. https://doi.org/10.1002/anie.201303490.
|
|
- Hopkins, C. R.; Collar, N. 6-Substituted-5H-Pyrrolo[2,3-b]Pyrazines via Palladium-Catalyzed Heteroannulation from N-(3-Chloropyrazin-2-Yl)-Methanesulfonamide and Alkynes. Tetrahedron Letters 2004, 45 (43), 8087–8090. https://doi.org/10.1016/j.tetlet.2004.08.155.
|
- Azimov, V. A.; Bychikhina, N. N.; Polezhaeva, A. I.; Mashkovskii, M. D.; Yakhontov, L. N. Synthesis and Pharmacologic Study of 6-Amino Derivatives of 5-Azaindoline. Pharm Chem J 1980, 14 (5), 308–313. https://doi.org/10.1007/BF00777399.
- Zhang, Z.; Yang, Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. A General Method for the Preparation of 4- and 6-Azaindoles. J. Org. Chem. 2002, 67 (7), 2345–2347. https://doi.org/10.1021/jo0111614.
|
|
- Subota, A. I.; Volochnyuk, D. M.; Gorlova, A. O.; Grygorenko, O. O. Scalable Synthesis and Properties of 7-Methyl- 4-Azaindole. Heterocyclic Communications 2017, 23 (6), 449–453. https://doi.org/10.1515/hc-2017-0180.
|
- Le, P. T.; Richardson, P. F.; Sach, N. W.; Xin, S.; Ren, S.; Xiao, J.; Xue, L. Development of a Scalable Synthesis of 4-Aminopyrimidin-5-Ol, a Versatile Intermediate. Org. Process Res. Dev. 2015, 19 (6), 639–645. https://doi.org/10.1021/acs.oprd.5b00074.
|
- Paudler, W. W.; Jovanovic, M. V. Bromination of Some Pyridine and Diazine N-Oxides. J. Org. Chem. 1983, 48 (7), 1064–1069. https://doi.org/10.1021/jo00155a027.
|
- Minzong Li; Konteatis Z.; Chen Y.; Zhou S.; Ma G.; Gross S.; Marjon K.; Hyer M.; Mandley E.; Lein M.; Padyana A.; Jin L.; Tong S.; Peters R.; Murtie J.; Travins J.; Medeiros M.; Liu P.; Victoria-Frank; Judd E.; Biller S.; Marks K.; Sui Z.; Reznik S. Leveraging Structure-Based Drug Design to IdentifyNext-Generation MAT2A Inhibitors, Including Brain-Penetrant and Peripherally Efficacious Leads. . Med. Chem.2022, 65, 6, 4600–4615. https://doi.org/10.1021/acs.jmedchem.1c01595
|
|
- Biot, N.; Romito, D.; Bonifazi, D. Substituent-Controlled Tailoring of Chalcogen-Bonded Supramolecular Nanoribbons in the Solid State. Crystal Growth & Design 2021, 21 (1), 536–543. https://doi.org/10.1021/acs.cgd.0c01318.
|
|
- Chessari, G.; Buck, I. M.; Day, J. E. H.; Day, P. J.; Iqbal, A.; Johnson, C. N.; Lewis, E. J.; Martins, V.; Miller, D.; Reader, M.; Rees, D. C.; Rich, S. J.; Tamanini, E.; Vitorino, M.; Ward, G. A.; Williams, P. A.; Williams, G.; Wilsher, N. E.; Woolford, A. J.-A. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. J. Med. Chem. 2015, 58 (16), 6574–6588. https://doi.org/10.1021/acs.jmedchem.5b00706.
|
|
- Hanan, E. J.; Eigenbrot, C.; Bryan, M. C.; Burdick, D. J.; Chan, B. K.; Chen, Y.; Dotson, J.; Heald, R. A.; Jackson, P. S.; La, H.; Lainchbury, M. D.; Malek, S.; Purkey, H. E.; Schaefer, G.; Schmidt, S.; Seward, E. M.; Sideris, S.; Tam, C.; Wang, S.; Yeap, S. K.; Yen, I.; Yin, J.; Yu, C.; Zilberleyb, I.; Heffron, T. P. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation. J. Med. Chem. 2014, 57 (23), 10176–10191. https://doi.org/10.1021/jm501578n.
|
|
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 National University of Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).












