An Efficient Synthesis of a Variety of Substituted Pyridine-3-Thiols

Authors

  • Oleksandr V. Borysov Institute of Organic Chemistry of the National Academy of Sciences of Ukraine; Enamine Ltd., Ukraine https://orcid.org/0000-0003-0360-9295
  • Dmytro P. Bohdan Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.25.324523

Keywords:

pyridine, thiols, thiobenzoic acid, chromatography, hydrolysis

Abstract

A practical and convenient method for the synthesis of pyridine-3-thiols using substituted 3-iodopyridines as starting compounds has been developed. Based on the use of thiobenzoic acid as a sulfur donor in a two-step procedure, this approach made it possible to synthesize a number of pyridine-3-thiols with F, Cl, Br, CH3, OCH3 substituents at various positions of the pyridine ring. The procedure presented gives high yields of the target products with a purity of 95% and is suitable for synthesis in tens of grams.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Ahmed, I. A. Major Dietary Interventions for the Management of Liver Disease. In Dietary Interventions in Liver Disease; Elsevier, 2019; pp 205–212. https://doi.org/10.1016/B978-0-12-814466-4.00017-3.
  2. Nakhaee, S.; Mehrpour, O. Niacin. In Encyclopedia of Toxicology; Elsevier, 2024; pp 755–761. https://doi.org/10.1016/B978-0-12-824315-2.00113-5.
  3. Sledge, C. L.; Morgan, B. W. Niacin. In Encyclopedia of Toxicology; Elsevier, 2014; pp 504–505. https://doi.org/10.1016/B978-0-12-386454-3.00760-0.
  4. Wittenberg, R. E.; Wolfman, S. L.; De Biasi, M.; Dani, J. A. Nicotinic Acetylcholine Receptors and Nicotine Addiction: A Brief Introduction. Neuropharmacology 2020, 177, 108256. https://doi.org/10.1016/j.neuropharm.2020.108256.
    | |
  5. Xiao, C.; Zhou, C.; Jiang, J.; Yin, C. Neural Circuits and Nicotinic Acetylcholine Receptors Mediate the Cholinergic Regulation of Midbrain Dopaminergic Neurons and Nicotine Dependence. Acta Pharmacol. Sin. 2020, 41 (1), 1–9. https://doi.org/10.1038/s41401-019-0299-4.
    | |
  6. Experimental and Clinical Neurotoxicology, 2nd ed.; Spencer, P. S., Schaumburg, H. H., Ludolph, A. C., Eds.; Oxford University Press: New York, 2023.
  7. Wang, J.-G.; Kario, K.; Lau, T.; Wei, Y. Q.; Park, C. G.; Kim, C. H.; Huang, J.; Zhang, W.; Li, Y.; Yan, P.; Hu, D. Use of Dihydropyridine Calcium Channel Blockers in the Management of Hypertension in Eastern Asians: A Scientific Statement from the Asian Pacific Heart Association. Hypertens. Res. 2011, 34 (4), 423–430. https://doi.org/10.1038/hr.2010.259.
    | |
  8. Ling, Y.; Hao, Z.-Y.; Liang, D.; Zhang, C.-L.; Liu, Y.-F.; Wang, Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. DDDT 2021, 15, 4289–4338. https://doi.org/10.2147/DDDT.S329547.
    | |
  9. Zhang, H. New Insights into Huperzine A for the Treatment of Alzheimer’s Disease. Acta Pharmacol. Sin. 2012, 33 (9), 1170–1175. https://doi.org/10.1038/aps.2012.128.
    | |
  10. Huaman, M. A.; Sterling, T. R. Treatment of Latent Tuberculosis Infection—An Update. Clinics in Chest Medicine 2019, 40 (4), 839–848. https://doi.org/10.1016/j.ccm.2019.07.008.
    | |
  11. Thee, S.; Garcia-Prats, A. J.; Donald, P. R.; Hesseling, A. C.; Schaaf, H. S. A Review of the Use of Ethionamide and Prothionamide in Childhood Tuberculosis. Tuberculosis 2016, 97, 126–136. https://doi.org/10.1016/j.tube.2015.09.007.
    | |
  12. Weinstock, J.; Wu, J.; Cao, P.; Kingsbury, W. D.; McDermott, J. L.; Kodrasov, M. P.; McKelvey, D. M.; Suresh Kumar, K. G.; Goldenberg, S. J.; Mattern, M. R.; Nicholson, B. Selective Dual Inhibitors of the Cancer-Related Deubiquitylating Proteases USP7 and USP47. ACS Med. Chem. Lett. 2012, 3 (10), 789–792. https://doi.org/10.1021/ml200276j.
    | |
  13. Zetterberg, F. R.; MacKinnon, A.; Brimert, T.; Gravelle, L.; Johnsson, R. E.; Kahl-Knutson, B.; Leffler, H.; Nilsson, U. J.; Pedersen, A.; Peterson, K.; Roper, J. A.; Schambye, H.; Slack, R. J.; Tantawi, S. Discovery and Optimization of the First Highly Effective and Orally Available Galectin-3 Inhibitors for Treatment of Fibrotic Disease. J. Med. Chem. 2022, 65 (19), 12626–12638. https://doi.org/10.1021/acs.jmedchem.2c00660.
    | |
  14. Niculescu-Duvaz, D.; Gaulon, C.; Dijkstra, H. P.; Niculescu-Duvaz, I.; Zambon, A.; Ménard, D.; Suijkerbuijk, B. M. J. M.; Nourry, A.; Davies, L.; Manne, H.; Friedlos, F.; Ogilvie, L.; Hedley, D.; Whittaker, S.; Kirk, R.; Gill, A.; Taylor, R. D.; Raynaud, F. I.; Moreno-Farre, J.; Marais, R.; Springer, C. J. Pyridoimidazolones as Novel Potent Inhibitors of V-Raf Murine Sarcoma Viral Oncogene Homologue B1 (BRAF). J. Med. Chem. 2009, 52 (8), 2255–2264. https://doi.org/10.1021/jm801509w.
    | |
  15. Augeri, D. J.; O’Connor, S. J.; Janowick, D.; Szczepankiewicz, B.; Sullivan, G.; Larsen, J.; Kalvin, D.; Cohen, J.; Devine, E.; Zhang, H.; Cherian, S.; Saeed, B.; Ng, S.-C.; Rosenberg, S. Potent and Selective Non-Cysteine-Containing Inhibitors of Protein Farnesyltransferase. J. Med. Chem. 1998, 41 (22), 4288–4300. https://doi.org/10.1021/jm980298s.
    | |
  16. Malwal, S. R.; Chen, L.; Hicks, H.; Qu, F.; Liu, W.; Shillo, A.; Law, W. X.; Zhang, J.; Chandnani, N.; Han, X.; Zheng, Y.; Chen, C.-C.; Guo, R.-T.; AbdelKhalek, A.; Seleem, M. N.; Oldfield, E. Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis. J. Med. Chem. 2019, 62 (5), 2564–2581. https://doi.org/10.1021/acs.jmedchem.8b01878.
    | |
  17. Campillo, D.; Belío, Ú.; Martín, A. New Pt→M (M = Ag or Tl) Complexes Based on Anionic Cyclometalated Pt( ii ) Complexes. Dalton Trans. 2019, 48 (10), 3270–3283. https://doi.org/10.1039/C9DT00121B.
    | |
  18. Fortuño, C.; Martín, A.; Mastrorilli, P.; Latronico, M.; Petrelli, V.; Todisco, S. Stable Mixed-Valence Diphenylphosphanido Bridged Platinum(II)–Platinum(IV) Complexes. Dalton Trans. 2020, 49 (15), 4935–4955. https://doi.org/10.1039/D0DT00712A.
    | |
  19. Zabolotna, Y.; Volochnyuk, D. M.; Ryabukhin, S. V.; Horvath, D.; Gavrilenko, K. S.; Marcou, G.; Moroz, Y. S.; Oksiuta, O.; Varnek, A. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. J. Chem. Inf. Model. 2022, 62 (9), 2171–2185. https://doi.org/10.1021/acs.jcim.1c00811.
    | |
  20. Fürst, H.; Heltzig, M.; Göbel, W. Beitrag Zur Darstellung Des Pyridin‐3‐sulfochlorids Und Des Pyridin‐3‐thiols. J. Prakt. Chem. 1967, 36 (3–4), 160–164. https://doi.org/10.1002/prac.19670360306.
  21. El-Aal, H. A. K. A.; Khalaf, A. A. Design and Diversity-Oriented Synthesis of Benzo- and Pyrido-Annulated Medium-Sized N,S-Heterocycles via Thio-Michael and Friedel-Crafts Approaches. Arkivoc 2019, 2019 (6), 212–227. https://doi.org/10.24820/ark.5550190.p011.048.
    |
  22. St. Jean, D. J.; Ashton, K. S.; Bartberger, M. D.; Chen, J.; Chmait, S.; Cupples, R.; Galbreath, E.; Helmering, J.; Hong, F.-T.; Jordan, S. R.; Liu, L.; Kunz, R. K.; Michelsen, K.; Nishimura, N.; Pennington, L. D.; Poon, S. F.; Reid, D.; Sivits, G.; Stec, M. M.; Tadesse, S.; Tamayo, N.; Van, G.; Yang, K. C.; Zhang, J.; Norman, M. H.; Fotsch, C.; Lloyd, D. J.; Hale, C. Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 2. Leveraging Structure-Based Drug Design to Identify Analogues with Improved Pharmacokinetic Profiles. J. Med. Chem. 2014, 57 (2), 325–338. https://doi.org/10.1021/jm4016747.
    | |
  23. Newman, M. S.; Karnes, H. A. The Conversion of Phenols to Thiophenols via Dialkylthiocarbamates. J. Org. Chem. 1966, 31 (12), 3980–3984. https://doi.org/10.1021/jo01350a023.
  24. Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Copper(II)‐Catalyzed Single‐Step Synthesis of Aryl Thiols from Aryl Halides and 1,2‐Ethanedithiol. Adv. Synth. Catal. 2015, 357 (10), 2205–2212. https://doi.org/10.1002/adsc.201400941.
    |
  25. Maślankiewicz, A.; Marciniec, K.; Pawlowski, M.; Zajdel, P. From Haloquinolines and Halopyridines to Quinoline- and Pyridinesulfonyl Chlorides and Sulfonamides. Heterocycles 2007, 71 (9), 1975. https://doi.org/10.3987/COM-07-11088.
    |
  26. Sawada, N.; Itoh, T.; Yasuda, N. Efficient Copper-Catalyzed Coupling of Aryl Iodides and Thiobenzoic Acid. Tetrahedron Lett. 2006, 47 (37), 6595–6597. https://doi.org/10.1016/j.tetlet.2006.07.008.
    |
  27. Ho, D. K. H.; Chan, L.; Hooper, A.; Brennan, P. E. A General and Mild Two-Step Procedure for the Synthesis of Aryl and Heteroaryl Sulfonamides from the Corresponding Iodides. Tetrahedron Lett. 2011, 52 (7), 820–823. https://doi.org/10.1016/j.tetlet.2010.12.050.
    |

Downloads

Published

2025-05-05

How to Cite

(1)
Borysov, O. V.; Bohdan, D. P. An Efficient Synthesis of a Variety of Substituted Pyridine-3-Thiols. J. Org. Pharm. Chem. 2025, 23, 43-48.

Issue

Section

Original Researches