The Synthesis of 2,5-Dioxaspiro[3.4]octane Building Blocks: Three-Dimensional Spirocyclic Analogs of 1,4-Dioxanes

Authors

DOI:

https://doi.org/10.24959/ophcj.25.324901

Keywords:

oxetanes, dioxanes, spirocycles, building blocks

Abstract

A ring-closing metathesis (RCM) strategy was employed for the synthesis of spirooxetane compounds with a tetrahydrofuran (THF) core. The approach proposed relied on the preparation of an unsaturated spirooxetane from vinyl oxetanol. The reaction sequence involved the NaH-mediated О-alkylation with methyl 2-(bromomethyl)acrylate in the presence of TBAI. The subsequent RCM reaction using the Grubbs’ II catalyst gave the dihydrofuran carboxylate with a yield of 70 %. The hydrogenation under high-pressure conditions using a Pearlman’s catalyst made it possible to obtain the saturated THF-derived carboxylate, which was then subjected to alkaline hydrolysis to give a stable lithium carboxylate. The corresponding alcohol obtained via LiAlH4-mediated reduction of the ester was oxidized to the corresponding aldehyde using DMP. The alcohol was further converted into a mesylate serving as a precursor for the corresponding amine and bromide. The set of dioxane analogs proposed can serve as promising building blocks readily available on a multigram scale for the scientific community.

Supporting Agency

  • The work was funded by the internal Enamine grant.

Downloads

Download data is not yet available.

References

  1. Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F. Oxetanes: Recent Advances in Synthesis, Reactivity, and Medicinal Chemistry. Chem. Rev. 2016, 116 (19), 12150 – 12233. https://doi.org/10.1021/acs.chemrev.6b00274.
    | |
  2. Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H.; Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Müller, K. Oxetanes in Drug Discovery: Structural and Synthetic Insights. J. Med. Chem. 2010, 53 (8), 3227 – 3246. https://doi.org/10.1021/jm9018788.
    | |
  3. Dubois, M. A. J.; Croft, R. A.; Ding, Y.; Choi, C.; Owen, D. R.; Bull, J. A.; Mousseau, J. J. Investigating 3,3-Diaryloxetanes as Potential Bioisosteres through Matched Molecular Pair Analysis. RSC Med. Chem. 2021, 12 (12), 2045 – 2052. https://doi.org/10.1039/D1MD00248A.
    | |
  4. Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Carreira, E. M. Oxetanes as Versatile Elements in Drug Discovery and Synthesis. Angew. Chem., Int. Ed. 2010, 49 (48), 9052 – 9067. https://doi.org/10.1002/anie.200907155.
    | |
  5. Croft, R. A.; Mousseau, J. J.; Choi, C.; Bull, J. A. Lithium-Catalyzed Thiol Alkylation with Tertiary and Secondary Alcohols: Synthesis of 3-Sulfanyl-Oxetanes as Bioisosteres. Chem. – Eur. J. 2018, 24 (4), 818 – 821. https://doi.org/10.1002/chem.201705576.
    | |
  6. Lassalas, P.; Oukoloff, K.; Makani, V.; James, M.; Tran, V.; Yao, Y.; Huang, L.; Vijayendran, K.; Monti, L.; Trojanowski, J. Q.; Lee, V. M.-Y.; Kozlowski, M. C.; Smith, A. B.; Brunden, K. R.; Ballatore, C. Evaluation of Oxetan-3-Ol, Thietan-3-Ol, and Derivatives Thereof as Bioisosteres of the Carboxylic Acid Functional Group. ACS Med. Chem. Lett. 2017, 8 (8), 864 – 868. https://doi.org/10.1021/acsmedchemlett.7b00212.
    | |
  7. Rojas, J. J.; Bull, J. A. Oxetanes in Drug Discovery Campaigns. J. Med. Chem. 2023, 66 (18), 12697 – 12709. https://doi.org/10.1021/acs.jmedchem.3c01101.
    | |
  8. Litskan, E.; Lynnyk, S.; Shypov, R.; Vashchenko, B.; Hoida, A.; Klymenko-Ulianov, O.; Gorlova, A.; Granat, D.; Grygorenko, O.; Volochnyuk, D.; Ryabukhin, S. Fine-Tuning of Physicochemical Properties of 3,3-Disubstituted Oxetanes on the Building Blocks Level. ChemRxiv 2025. https://doi.org/10.26434/chemrxiv-2025-6gxq5.
  9. DrugBank. https://go.drugbank.com/ (accessed Sep 10, 2024).
  10. Zheng, X.; Gao, L.; Wang, L.; Liang, C.; Wang, B.; Liu, Y.; Feng, S.; Zhang, B.; Zhou, M.; Yu, X.; Xiang, K.; Chen, L.; Guo, T.; Shen, H. C.; Zou, G.; Wu, J. Z.; Yun, H. Discovery of Ziresovir as a Potent, Selective, and Orally Bioavailable Respiratory Syncytial Virus Fusion Protein Inhibitor. J. Med. Chem. 2019, 62 (13), 6003 – 6014. https://doi.org/10.1021/acs.jmedchem.9b00654.
    | |
  11. Lee, H.; Elkamhawy, A.; Rakhalskaya, P.; Lu, Q.; Nada, H.; Quan, G.; Lee, K. Small Molecules in Parkinson’s Disease Therapy: From Dopamine Pathways to New Emerging Targets. Pharmaceuticals 2024, 17 (12), 1688. https://doi.org/10.3390/ph17121688.
    | |
  12. Litskan, E.; Semenchenko, O.; Lynnyk, S.; Granat, D.; Vashchenko, B.; Hoida, A.; Tolmachova, D.; Leha, D.; Grygorenko, O.; Volochnyuk, D.; Ryabukhin, S. Oxetane as a Part of Modern Medicinal Chemistry Toolbox: The Case of 3,3-Disubstituted Building Blocks. ChemRxiv 2024. https://doi.org/10.26434/chemrxiv-2024-95r5v.
  13. Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals, 5th ed.; Elsevier: Oxford, 2003.

Downloads

Published

2025-05-05

How to Cite

(1)
Vashchenko, B. V.; Litskan, E. V. The Synthesis of 2,5-Dioxaspiro[3.4]octane Building Blocks: Three-Dimensional Spirocyclic Analogs of 1,4-Dioxanes. J. Org. Pharm. Chem. 2025, 23, 30-35.

Issue

Section

Original Researches