Hydrolysis of Difluorocyclopropenes: the Role of the Cyclopropenyl Cation and the Effects of Substituents

Authors

DOI:

https://doi.org/10.24959/ophcj.25.324913

Keywords:

difluorocyclopropenes, cyclopropenyl cation, hydrolysis

Abstract

Monosubstituted gem-difluorocyclopropenes undergo hydrolysis yielding cyclopropenones and acrylic acid derivatives. Herein, we investigate the reaction routes of hydrolysis for both aromatic and alkyl derivatives. The study supports the idea that the formation of a cyclopropenyl cation controls the reactivity of gem-difluorocyclopropenes, and aromatic substituents accelerate the hydrolysis via the resonance stabilization. Reaction conditions, including the solvent composition and temperature, significantly affect the conversion and the product selectivity. This information facilitates the preparative synthesis and improves understanding of the fluorinated cyclopropene reactivity.

Supporting Agency

  • The work was funded by the internal Enamine grant and the grant of the Ministry of Education and Science of Ukraine (grant number 0123U102102).

Downloads

Download data is not yet available.

References

  1. Wang, X.; Wang, F.; Huang, F.; Ni, C.; Hu, J. Deoxyfluorination of Carboxylic Acids with CpFluor: Access to Acyl Fluorides and Amides. Org. Lett. 2021, 23 (5), 1764 – 1768. https://doi.org/10.1021/acs.orglett.1c00190.
    | |
  2. Nechaev, I. V.; Cherkaev, G. V.; Boev, N. V.; Solyev, P. N. Three-Component Reaction of 3,3-Difluorocyclopropenes, s-Tetrazines, and (Benzo) Pyridines. J. Org. Chem. 2021, 86 (1), 1037 – 1052. https://doi.org/10.1021/acs.joc.0c02292.
    | |
  3. Nechaev, I. V.; Cherkaev, G. V.; Solyev, P. N.; Boev, N. V. Synthesis and Aerobic Dehydrogenation of Indolizin-1-Ol Derivatives. J. Org. Chem. 2021, 86 (5), 4220 – 4235. https://doi.org/10.1021/acs.joc.0c03046.
    | |
  4. Nosik, P. S.; Pashko, M. O.; Poturai, A. S.; Kvasha, D. A.; Pashenko, A. E.; Rozhenko, A. B.; Suikov, S.; Volochnyuk, D. M.; Ryabukhin, S. V.; Yagupolskii, Y. L. Monosubstituted 3,3-Difluorocyclopropenes as Bench-Stable Reagents: Scope and Limitations. Eur. J. Org. Chem. 2021, 2021 (47), 6604 – 6615. https://doi.org/10.1002/ejoc.202100921.
    |
  5. Li, L.; Ni, C.; Wang, F.; Hu, J. Deoxyfluorination of Alcohols with 3,3-Difluoro-1,2-Diarylcyclopropenes. Nat. Commun. 2016, 7 (1), 13320. https://doi.org/10.1038/ncomms13320.
    | |
  6. Law, D. C. F.; Tobey, S. W.; West, R. Fluorinated Cyclopropenes and Cyclopropenium Ions. J. Org. Chem. 1973, 38 (4), 768 – 773. https://doi.org/10.1021/jo00944a032.
    |
  7. Breslow, R.; Dowd, P. The Dimerization of Triphenylcyclopropene. J. Am. Chem. Soc. 1963, 85 (18), 2729–2735. https://doi.org/10.1021/ja00901a012.
  8. Smart, B. E. Fluorinated Cyclopropenyl Methyl Ethers. New Stable Cyclopropenium Cations. J. Org. Chem. 1976, 41 (14), 2377 – 2379. https://doi.org/10.1021/jo00876a005.
    |
  9. Dolbier, W. R.; Battiste, M. A. Structure, Synthesis, and Chemical Reactions of Fluorinated Cyclopropanes and Cyclopropenes. Chem. Rev. 2003, 103 (4), 1071 – 1098. https://doi.org/10.1021/cr010023b.
    | |

Downloads

Published

2025-05-05

How to Cite

(1)
Pashko, M. O.; Ryabukhin, S. V. Hydrolysis of Difluorocyclopropenes: The Role of the Cyclopropenyl Cation and the Effects of Substituents. J. Org. Pharm. Chem. 2025, 23, 36-42.

Issue

Section

Original Researches