The Study of the Complexation of Calix[4]arene-Hydroxymethylphosphonic Acid and Calix[4]arene-Hydroxymethyldimethylphosphine Oxide with Antiviral Drugs
DOI:
https://doi.org/10.24959/ophcj.25.336375Keywords:
calixarenes, antiviral drugs, supramolecular complexes, chromatography, molecular modelingAbstract
The host-guest complexation of cone-shaped calix[4]arene-hydroxymethylphosphonic acid (CPA) and calix[4]arene-hydroxymethyldimethylphosphine oxide (CPO) with active pharmaceutical ingredients of antiviral drugs Remdesivir, Nevirapine, Vesatolimod, and Bictegravir in the aqueous-organic mobile phase on a Zorbax CN column has been studied using RP HPLC method. By analyzing the dependence of the drug capacity values on the concentration of calixarene in the mobile phase, the stability constants (КА = 3672 - 6884 M-1) of the complexes formed have been determined. Quantum-chemical calculations show that the drugs studied form supramolecular exo-complexes with CPA and CPO molecules. These complexes are stabilized by intermolecular hydrogen bonds of proton donor groups P(O)(OH)2 CPA and proton acceptor groups Me2P=O CPO with the amino group of Remdesivir, the amide group of Nevirapine, the amino group and amide group of Vesatolimod, and the amide group of Bictegravir.
Supporting Agency
- This work was supported by the National Academy of Sciences of Ukraine (grant No. 0120U104649), and by the Ministerio de Ciencia, Innovación y Universidades (PID2023-151642OB-I00) and the European Union (Feder Funds).
Downloads
References
- Calixarenes and Beyond; Neri, P.; Sessler, J. L.; Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016. https://doi.org/10.1007/978-3-319-31867-7.
- Calixarenes in the Nanoworld; Vicens, J.; Harrowfield, J.; Baklouti, L., Eds.; Springer Netherlands, 2007. https://doi.org/10.1007/978-1-4020-5022-4.
- Liu, Z.; Dai, X.; Sun, Y.; Liu, Y. Organic Supramolecular Aggregates Based on Water‐soluble Cyclodextrins and Calixarenes. Aggregate 2020, 1 (1), 31–44. https://doi.org/10.1002/agt2.3.
|
- Español, E. S.; Villamil, M. M. Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules 2019, 9 (3), 90. https://doi.org/10.3390/biom9030090.
|
|
- Rodik, R. V.; Boyko, V. I.; Kalchenko, V. I. Calixarenes in Biotechnology and Bio-Medical Research. In Frontiers in Medicinal Chemistry; Atta-ur-Rahman; Choudhary, M. I.; Reitz, A. B., Eds.; Bentham Science Publishers, 2016; pp 206–301. https://doi.org/10.2174/9781681081755116080008.
|
- Pan, Y.; Hu, X.; Guo, D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew. Chem. Int. Ed. 2021, 60 (6), 2768–2794. https://doi.org/10.1002/anie.201916380.
|
|
- Fan, X.; Guo, X. Development of Calixarene-Based Drug Nanocarriers. Journal of Molecular Liquids 2021, 325, 115246. https://doi.org/10.1016/j.molliq.2020.115246.
|
- Bai, H.; Wang, J.; Li, Z.; Tang, G. Macrocyclic Compounds for Drug and Gene Delivery in Immune-Modulating Therapy. IJMS 2019, 20 (9), 2097. https://doi.org/10.3390/ijms20092097.
|
|
- Baldini, L.; Casnati, A.; Sansone, F. Multivalent and Multifunctional Calixarenes in Bionanotechnology. Eur. J. Org. Chem. 2020, 2020 (32), 5056–5069. https://doi.org/10.1002/ejoc.202000255.
|
- Ostos, F. J.; Lebrón, J. A.; López-Cornejo, P.; López-López, M.; García-Calderón, M.; García-Calderón, C. B.; Rosado, I. V.; Kalchenko, V. I.; Rodik, R. V.; Moyá, M. L. Self-Aggregation in Aqueous Solution of Amphiphilic Cationic Calix[4]Arenes. Potential Use as Vectors and Nanocarriers. Journal of Molecular Liquids 2020, 304, 112724. https://doi.org/10.1016/j.molliq.2020.112724.
|
- Lebrón, J. A.; López-López, M.; García-Calderón, C. B.; V. Rosado, I.; Balestra, F. R.; Huertas, P.; Rodik, R. V.; Kalchenko, V. I.; Bernal, E.; Moyá, M. L.; López-Cornejo, P.; Ostos, F. J. Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics 2021, 13 (8), 1250. https://doi.org/10.3390/pharmaceutics13081250.
|
|
- Perret, F.; Mazzorana, M.; Shahgaldian, P.; Coleman, A. W. First step in the study of the cellular toxicity of the calixarene. International Symposium on Supramolecular Chemistry XI, Fukuoka, 2000; PB-26, 387.
- Da Silva, E.; Shahgaldian, P.; Coleman, A. W. Haemolytic Properties of Some Water-Soluble Para-Sulphonato-Calix-[n]-Arenes. International Journal of Pharmaceutics 2004, 273 (1–2), 57–62. https://doi.org/10.1016/j.ijpharm.2003.12.008.
|
|
- Coleman, A. W.; Jebors, S.; Cecillon, S.; Perret, P.; Garin, D.; Marti-Battle, D.; Moulin, M. Toxicity and Biodistribution of Para-Sulfonato-Calix[4]Arene in Mice. New J. Chem. 2008, 32 (5), 780. https://doi.org/10.1039/b718962a.
|
- Chernyshenko, V. O.; Korolova, D. S.; Nikolaienko, T. V.; Dosenko, V. Е.; Pashevin, D. O.; Kalchenko, V. I.; Cherenok, S. O.; Khranovska, N. N.; Garmanchuk, L. V.; Lugovskoy, E. V.; Komisarenko, S. V. Calix[4]arene C-145 Effects on Cellular Haemostasis. Biotechnologia acta 2016, 9 (3), 37–43. https://doi.org/10.15407/biotech9.03.037.
- Shahgaldian, P.; Da Silva, E.; Coleman, A. W. A First Approach to the Study of Calixarene Solid Lipid Nanoparticle (SLN) Toxicity. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2003, 46 (3/4), 175–177. https://doi.org/10.1023/A:1026301906487.
|
- Dings, R. P. M.; Chen, X.; Hellebrekers, D. M. E. I.; Van Eijk, L. I.; Zhang, Y.; Hoye, T. R.; Griffioen, A. W.; Mayo, K. H. Design of Nonpeptidic Topomimetics of Antiangiogenic Proteins with Antitumor Activities. JNCI: Journal of the National Cancer Institute 2006, 98 (13), 932–936. https://doi.org/10.1093/jnci/djj247.
|
|
- Perret, F.; Lazar, A. N.; Coleman, A. W. Biochemistry of the Para-Sulfonato-Calix[n]Arenes. Chem. Commun. 2006, 2006 (23), 2425-2438. https://doi.org/10.1039/b600720c.
|
|
- Galindo-Murillo, R.; Olmedo-Romero, A.; Cruz-Flores, E.; Petrar, P. M.; Kunsagi-Mate, S.; Barroso-Flores, J. Calix[n]Arene-Based Drug Carriers: A DFT Study of Their Electronic Interactions with a Chemotherapeutic Agent Used against Leukemia. Computational and Theoretical Chemistry 2014, 1035, 84–91. https://doi.org/10.1016/j.comptc.2014.03.001.
|
- Menon, S. K.; Mistry, B. R.; Joshi, K. V.; Modi, N. R.; Shashtri, D. Evaluation and Solubility Improvement of Carvedilol: PSC[n]Arene Inclusion Complexes with Acute Oral Toxicity Studies. J. Incl. Phenom. Macrocycl. Chem. 2012, 73 (1-4), 295-303. https://doi.org/10.1007/s10847-011-0056-x.
|
- Chen, M.-X.; Li, T.; Peng, S.; Tao, D. Supramolecular Nanocapsules from the Self-Assembly of Amphiphilic Calixarene as a Carrier for Paclitaxel. New J. Chem. 2016, 40 (12), 9923-9929. https://doi.org/10.1039/C6NJ01986B.
|
- Zhao, Q.-H.; Chen, C.-P.; Pang, T.-T.; Du, L.-M.; Li, Y.; Xie, J.-H.; Fu, Y.-L. Investigated the Supramolecular Interaction of Tramadol Hydrochloride with P-Sulfonated Calix[4,6,8]Arene. J. Chil. Chem. Soc. 2015, 60 (4), 2659–2663. https://doi.org/10.4067/S0717-97072015000400007.
|
- Wang, Y.-X.; Guo, D.-S.; Duan, Y.-C.; Wang, Y.-J.; Liu, Y. Amphiphilic P-Sulfonatocalix[4]Arene as “Drug Chaperone” for Escorting Anticancer Drugs. Sci. Rep. 2015, 5 (1), 9019. https://doi.org/10.1038/srep09019.
|
|
- Yang, W.; De Villiers, M. M. The Solubilization of the Poorly Water Soluble Drug Nifedipine by Water Soluble 4-Sulphonic Calix[n]Arenes. European Journal of Pharmaceutics and Biopharmaceutics 2004, 58 (3), 629–636. https://doi.org/10.1016/j.ejpb.2004.04.010.
|
|
- Jarange, A. B.; Patil, S. V.; Malkhede, D. D.; Deodhar, S. M.; Nandre, V. S.; Athare, S. V.; Kodam, K. M.; Gejji, S. P. P-Sulfonatocalixarene versus p-Thiasulfonatocalixarene: Encapsulation of Tenofovir Disoproxil Fumarate and Implications to ESI-MS, HPLC, NMR, DFT and Anti-MRSA Activities. J. Incl. Phenom. Macrocycl. Chem. 2021, 99 (1-2), 43-59. https://doi.org/10.1007/s10847-020-01022-w.
|
- Organophosphorus Chemistry: Novel Developments; Keglevich, G., Ed.; De Gruyter, 2018. https://doi.org/10.1515/9783110535839.
- Finkbeiner, P.; Hehn, J. P.; Gnamm, C. Phosphine Oxides from a Medicinal Chemist’s Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery. J. Med. Chem. 2020, 63 (13), 7081–7107. https://doi.org/10.1021/acs.jmedchem.0c00407.
|
|
- Komisarenko, S. V.; Kosterin, S. O.; Lugovskoy, E. V.; Cherenok, S. O.; Tanchuk, V. Yu.; Vovk, A. I.; Kalchenko, V. I. Synthesis and characterization of calixarene methylene bisphosphonic acids as effectors of biochemical processes. In Ligands: synthesis, characterization and role in biotechnology; Gawryszewska, P.; Smolenski, P., Eds.; Nova Science Publishers, Inc: New York, 2014; Chapter 3, 67-116.
- Labyntseva, R. D.; Yavorovska, V. I.; Bevza, O. V.; Kalchenko, V. I.; Kosterin, S. O. Calix[4]arenes as the effectors of smooth muscle myosin ATPase. In Myosin: biosynthesis, classes and function; Broadbent, D., Ed. Nova Science Publishers, Inc.: New York, 2018; Chapter 2, 89-135.
- Tauran, Y.; Coleman, A.; Perret, F.; Kim, B. Cellular and in Vivo Biological Activities of the Calix[n]Arenes. Current Organic Chemistry 2015, 19 (23), 2250–2270. https://doi.org/10.2174/1385272819666150608222114.
|
- Kosterin, S. O.; Kalchenko, V. I.; Veklich, Т. О.; Babich, L. G.; Shlikov, S. G. Calix[4]arenes as modulators of ATP-hydrolase systems of smooth muscle cells. Naukova Dumka: Kyiv, 2019.
- Trush, V. V.; Cherenok, S. O.; Tanchuk, V. Yu.; Kukhar, V. P.; Kalchenko, V. I.; Vovk, A. I. Calix[4]Arene Methylenebisphosphonic Acids as Inhibitors of Protein Tyrosine Phosphatase 1B. Bioorganic & Medicinal Chemistry Letters 2013, 23 (20), 5619–5623. https://doi.org/10.1016/j.bmcl.2013.08.040.
|
|
- Vovk, A. I.; Tanchuk, V. Yu.; Kononets, L. A.; Cherenok, S. O.; Drapailo, A. B.; Kalchenko, V. I.; Kukhar, V. P. A Novel Approach to the Design of Phosphonate Inhibitors of Protein Tyrosine Phosphatase. Phosphorus, Sulfur, and Silicon and the Related Elements 2011, 186 (4), 958–960. https://doi.org/10.1080/10426507.2010.521213.
|
- Vovk, A. I.; Kononets, L. A.; Tanchuk, V. Yu.; Cherenok, S. O.; Drapailo, A. B.; Kalchenko, V. I.; Kukhar, V. P. Inhibition of Yersinia Protein Tyrosine Phosphatase by Phosphonate Derivatives of Calixarenes. Bioorganic & Medicinal Chemistry Letters 2010, 20 (2), 483–487. https://doi.org/10.1016/j.bmcl.2009.11.126.
|
|
- Vovk, A. I.; Mischenko, I. M.; Cherenok, S. O.; Tanchuk, V. Yu.; Kalchenko, V. I.; Kukhar, V. P. Phosphorylated Calix[4]Arenes as Inhibitors of Glutathione S-Transferase. Phosphorus, Sulfur, and Silicon and the Related Elements 2011, 186 (4), 961–963. https://doi.org/10.1080/10426507.2010.514313.
|
- Trush, V. V.; Kharchenko, S. G.; Tanchuk, V. Yu.; Kalchenko, V. I.; Vovk, A. I. Phosphonate Monoesters on a Thiacalix[4]Arene Framework as Potential Inhibitors of Protein Tyrosine Phosphatase 1B. Org. Biomol. Chem. 2015, 13 (33), 8803–8806. https://doi.org/10.1039/C5OB01247C.
|
|
- Bayrakci, M.; Ertul, Ş.; Yilmaz, M. Phase Solubility Studies of Poorly Soluble Drug Molecules by Using O-Phosphorylated Calixarenes as Drug-Solubilizing Agents. J. Chem. Eng. Data 2012, 57 (1), 233–239. https://doi.org/10.1021/je200992c.
|
- Perret, F.; Nishihara, M.; Takeuchi, T.; Futaki, S.; Lazar, A. N.; Coleman, A. W.; Sakai, N.; Matile, S. Anionic Fullerenes, Calixarenes, Coronenes, and Pyrenes as Activators of Oligo/Polyarginines in Model Membranes and Live Cells. JACS 2005, 127 (4), 1114–1115. https://doi.org/10.1021/ja043633c.
|
|
- Kalchenko, O. I.; Rozhenko, A. B.; Cherenok, S. O.; Selikhova, A. I.; Suikov, S. Yu.; Kyrylchuk, A. A.; Kalchenko, V. I. Complexation of Water-Soluble Phosphorylated Calixarenes with Uracils. Stability Constants and DFT Study of the Supramolecular Complexes. J. Incl. Phenom. Macrocycl. Chem. 2023, 103 (9–10), 369–383. https://doi.org/10.1007/s10847-023-01198-x.
|
- Kalchenko, O. I.; Rozhenko, A. B.; Cherenok, S. O.; Selikhova, A. I.; Drapailo, A. B.; López-Cornejo, P.; Kalchenko, V. I. Stability Constants and DFT Calculations of Anionic Calixarene Complexes with Antiretroviral Drugs Tenofovir and Emtricitabine. J. Incl. Phenom. Macrocycl. Chem. 2025, 105 (5–6), 297–310. https://doi.org/10.1007/s10847-024-01273-x.
|
- Li, M.; Mao, L.; Chen, M.; Li, M.; Wang, K.; Mo, J. Characterization of an Amphiphilic Phosphonated Calixarene Carrier Loaded with Carboplatin and Paclitaxel: A Preliminary Study to Treat Colon Cancer in Vitro and in Vivo. Front. Bioeng. Biotechnol. 2019, 7, 238. https://doi.org/10.3389/fbioe.2019.00238.
|
|
- Rodik, R. V.; Cherenok, S. O.; Postupalenko, V. Y.; Oncul, S.; Brusianska, V.; Borysko, P.; Kalchenko, V. I.; Mely, Y.; Klymchenko, A. S. Anionic Amphiphilic Calixarenes for Peptide Assembly and Delivery. Journal of Colloid and Interface Science 2022, 624, 270–278. https://doi.org/10.1016/j.jcis.2022.05.124.
|
|
- Cherenok, S. O.; Yushchenko, O. A.; Tanchuk, V. Yu.; Mischenko, I. M.; Samus, N. V.; Ruban, O. V.; Matvieiev, Y. I.; Karpenko, J. A.; Kukhar, V. P.; Vovk, A. I.; Kalchenko, V. I. Calix[4]Arene-α-Hydroxyphosphonic Acids. Synthesis, Stereochemistry, and Inhibition of Glutathione S-Transferase. Arkivoc 2012, 2012 (4), 278–298. https://doi.org/10.3998/ark.5550190.0013.421.
|
- Cherenok, S. O.; Shishkina, S. V.; Selikhova. A. I.; Drapailo, A. B.; Kalchenko, V. I. Synthesis and self-assembling of calix[4]arene-hydroxymethyldimethylphosphine oxides. Book of Abstracts, XXVI Ukrainian Conference on Organic and Bioorganic Chemistry, Uzhhorod, September 16-20, 2024, 41.
- Hypercube Downloads http://www.hypercubeusa.com/Download/tabid/357/Default.aspx (accessed May 11, 2025).
- Gupta, R. K.; Van De Vijver, D. A. M. C.; Manicklal, S.; Wainberg, M. A. Evolving Uses of Oral Reverse Transcriptase Inhibitors in the HIV-1 Epidemic: From Treatment to Prevention. Retrovirology 2013, 10 (1), 82. https://doi.org/10.1186/1742-4690-10-82.
|
|
- Arts, E. J.; Hazuda, D. J. HIV-1 Antiretroviral Drug Therapy. Cold Spring Harbor Perspectives in Medicine 2012, 2 (4), a007161–a007161. https://doi.org/10.1101/cshperspect.a007161.
|
|
- Margolis, A. M.; Heverling, H.; Pham, P. A.; Stolbach, A. A Review of the Toxicity of HIV Medications. J. Med. Toxicol. 2014, 10 (1), 26–39. https://doi.org/10.1007/s13181-013-0325-8.
|
|
- Paik, S. Fatal Nevirapine-Induced Toxic Epidermal Necrolysis in a HIV Infected Patient. JCDR 2016. https://doi.org/10.7860/JCDR/2016/16360.7415.
|
|
- Fedyk, A.; Slobodyanyuk, E. Y.; Stotska, O.; Vashchenko, B. V.; Volochnyuk, D. M.; Sibgatulin, D. A.; Tolmachev, A. A.; Grygorenko, O. O. Heteroaliphatic Dimethylphosphine Oxide Building Blocks: Synthesis and Physico‐Chemical Properties. Eur. J. Org. Chem. 2021, 2021 (47), 6591–6603. https://doi.org/10.1002/ejoc.202100581.
|
- Fedyk, A. V.; Chalyk, B. A. Synthesis of Functionalized 4,5-Dihydroisoxazoles Decorated with the Dimethylphosphinoyl Group. J. Org. Pharm. Chem. 2023, 21 (2), 41–52. https://doi.org/10.24959/ophcj.23.283988.
- Laurence, C.; Brameld, K. A.; Graton, J.; Le Questel, J.-Y.; Renault, E. The p KBHX Database: Toward a Better Understanding of Hydrogen-Bond Basicity for Medicinal Chemists. J. Med. Chem. 2009, 52 (14), 4073–4086. https://doi.org/10.1021/jm801331y.
|
|
- National Cancer Institute. FDA grants Brigatinib accelerated approval for metastatic non-small cell lung cancer. https://www.cancer.gov/news-events/cancer-currents-blog/2017/brigatinib-fda-lung-cancer (accessed Jun 23, 2025).
- Uchibori, K.; Inase, N.; Araki, M.; Kamada, M.; Sato, S.; Okuno, Y.; Fujita, N.; Katayama, R. Brigatinib Combined with Anti-EGFR Antibody Overcomes Osimertinib Resistance in EGFR-Mutated Non-Small-Cell Lung Cancer. Nat. Commun. 2017, 8 (1), 14768. https://doi.org/10.1038/ncomms14768.
|
|
- Yu, H.; Yang, H.; Shi, E.; Tang, W. Development and Clinical Application of Phosphorus-Containing Drugs. Medicine in Drug Discovery 2020, 8, 100063. https://doi.org/10.1016/j.medidd.2020.100063.
|
- Zielenkiewicz, W.; Marcinowicz, A.; Poznański, J.; Cherenok, S.; Kalchenko, V. Complexation of Isoleucine by Phosphorylated Calix[4]Arene in Methanol Followed by Calorimetry, NMR and UV–VIS Spectroscopies, and Molecular Modeling Methods. Journal of Molecular Liquids 2005, 121 (1), 8–14. https://doi.org/10.1016/j.molliq.2004.08.031.
|
- Yakovenko, A. V.; Boyko, V. I.; Kalchenko, V. I.; Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. N- Linked Peptidocalix[4]Arene Bisureas as Enantioselective Receptors for Amino Acid Derivatives. J. Org. Chem. 2007, 72 (9), 3223–3231. https://doi.org/10.1021/jo062410x.
|
|
- Sansone, F.; Barboso, S.; Casnati, A.; Sciotto, D.; Ungaro, R. A New Chiral Rigid Cone Water Soluble Peptidocalix[4]Arene and Its Inclusion Complexes with α-Amino Acids and Aromatic Ammonium Cations. Tetrahedron Letters 1999, 40 (25), 4741–4744. https://doi.org/10.1016/S0040-4039(99)00838-2.
|
- Acharya, A.; Ramanujam, B.; Chinta, J. P.; Rao, C. P. 1,3-Diamido-Calix[4]Arene Conjugates of Amino Acids: Recognition of −COOH Side Chain Present in Amino Acids, Peptides, and Proteins by Experimental and Computational Studies. J. Org. Chem. 2011, 76 (1), 127–137. https://doi.org/10.1021/jo101759f.
|
|
- Li, W. Y.; Li, H.; Zhang, G. M.; Chao, J. B.; Ling, L. X.; Shuang, S. M.; Dong, C. Interaction of Water-Soluble Calix[4]Arene with l-Tryptophan Studied by Fluorescence Spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry 2008, 197 (2–3), 389–393. https://doi.org/10.1016/j.jphotochem.2008.02.002.
|
- Kim, L.; Hamdi, A.; Stancu, A. D.; Souane, R.; Mutihac, L.; Vicens, J. Selective Membrane Transport of Amino Acids by Functionalised Calix[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2010, 66 (1–2), 55–59. https://doi.org/10.1007/s10847-009-9622-x.
|
- Durmaz, M.; Alpaydin, S.; Sirit, A.; Yilmaz, M. Enantiomeric Recognition of Amino Acid Derivatives by Chiral Schiff Bases of Calix[4]Arene. Tetrahedron: Asymmetry 2007, 18 (7), 900–905. https://doi.org/10.1016/j.tetasy.2007.04.001.
|
- Stone, M. M.; Franz, A. H.; Lebrilla, C. B. Non-Covalent Calixarene-Amino Acid Complexes Formed by MALDI-MS. J. Am. Soc. Mass Spectrom. 2002, 13 (8), 964–974. https://doi.org/10.1016/S1044-0305(02)00417-8.
|
|
- Chen, H.; Gu, L.; Yin, Y.; Koh, K.; Lee, J. Molecular Recognition of Arginine by Supramolecular Complexation with Calixarene Crown Ether Based on Surface Plasmon Resonance. IJMS 2011, 12 (4), 2315–2324. https://doi.org/10.3390/ijms12042315.
|
|
- Lipkowski, J.; Kalchenko, O. I.; Slowikowska, J.; Kalchenko, V. I.; Lukin, O. V.; Markovsky, L. N.; Nowakowski, R. Host-Guest Interactions of Calix[4]Resorcinarenes with Benzene Derivatives in Conditions of Reversed-Phase High-Performance Liquid Chromatography. Determination of Stability Constants. J. Phys. Org. Chem. 1998, 11 (6), 426–437. https://doi.org/10.1002/(SICI)1099-1395(199806)11:6%253C426::AID-POC963%253E3.0.CO;2-R.
|
- Kalchenko, O. I.; Lipkowsk, J.; Kalchenko, V. I.; Vysotsky, M. A.; Markovsky, L. N. Effect of Octakis(Diethoxyphosphoryloxy)-Tert-Butyl-Calix[8]Arene in Mobile Phase on the Reversed-Phase Retention Behavior of Aromatic Compounds: Host-Guest Complex Formation and Stability Constants Determination. Journal of Chromatographic Science 1998, 36 (5), 269–273. https://doi.org/10.1093/chromsci/36.5.269.
|
- Kalchenko, O. I.; Da Silva, E.; Coleman, A. W. Determination of the Stability Constants of Inclusion Complexes of P-H-37-(Carboxy-Methyloxy)-Calix-[6]-Arene and p-Sulphonato-37-(2-Carboxy-Methyloxy)Calix[6]Arene with 15 Amino Acids by RP HPLC. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2002, 43 (3/4), 305–310. https://doi.org/10.1023/A:1021203505307.
|
- Kalchenko, O.; Cherenok, S.; Suikov, S.; Vitaly Kalchenko, V. K. Study of Calixarene Complexation with Biologically Active. Fr. Ukr. J. Chem. 2017, 5 (2), 49–55. https://doi.org/10.17721/fujcV5I2P49-55.
- Solovyov, A. V.; Cherenok, S. O.; Kalchenko, O. I.; Atamas, L. I.; Kazantseva, Z. I.; Koshets, I. A.; Tsymbal, I. F.; Kalchenko, V. I. Synthesis and Complexation of Amphiphilic Calix[4]Arene Phosphonates with Organic Molecules in Solutions and Langmuir-Blodgett Films. Journal of Molecular Liquids 2011, 159 (2), 117–123. https://doi.org/10.1016/j.molliq.2010.12.007.
|
- Kalchenko, O. I.; Cherenok, S. O.; Solovyov, A. V.; Kalchenko, V. I. Influence of Calixarenes on Chromatographic Separation of Benzene or Uracil Derivatives. Chroma 2009, 70 (5–6), 717–721. https://doi.org/10.1365/s10337-009-1229-2.
|
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 National University of Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).












