Interaction of the N-(tert-butylsulfinyl)imine of Trifluoropyruvate with Diazomethane as a Convenient Synthetic Approach to Enantiomeric Trifluoromethylamino Acids
DOI:
https://doi.org/10.24959/ophcj.25.343956Keywords:
amino acids, trifluoromethyl, diazomethane, enantiomeric, tert-butylsulfinyl, imineAbstract
The interaction of enantiomerically pure N-tert-butylsulfinyl imines of trifluoropyruvate with diazomethane has been studied. It has been shown that there is the [3+2]-cycloaddition at the initial step with the formation of diastereomeric trifluoromethyltriazoline carboxylates in the ratio of 5.6:1. Treating the triazoline carboxylates with trifluoroacetic acid yielded optically pure aziridine carboxylates, which were subsequently converted into their corresponding acids. When subjected to hydrochloric acid in an ethereal solution, trifluoromethylaziridines underwent ring-opening and the sulfinyl group removal, producing α-chloromethylamino acids. The study also demonstrates the potential use of these aziridinecarboxylic acids in the peptide synthesis.
Supporting Agency
- The work was supported by the National Academy of Sciences of Ukraine (grant No. 0124U002052).
Downloads
References
- Bégué, J.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, 1st ed.; Wiley, 2008. https://doi.org/10.1002/9780470281895.
- Zanda, M. Trifluoromethyl Group: An Effective Xenobiotic Function for Peptide Backbone Modification. New J. Chem. 2004, 28 (12), 1401. https://doi.org/10.1039/b405955g.
|
- Black, W. C.; Bayly, C. I.; Davis, D. E.; Desmarais, S.; Falgueyret, J.-P.; Léger, S.; Li, C. S.; Massé, F.; McKay, D. J.; Palmer, J. T.; Percival, M. D.; Robichaud, J.; Tsou, N.; Zamboni, R. Trifluoroethylamines as Amide Isosteres in Inhibitors of Cathepsin K. Bioorg. Med. Chem. Lett. 2005, 15 (21), 4741 – 4744. https://doi.org/10.1016/j.bmcl.2005.07.071.
|
|
- Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L. T.; Falgueyret, J.-P.; Kimmel, D. B.; Lamontagne, S.; Léger, S.; LeRiche, T.; Li, C. S.; Massé, F.; McKay, D. J.; Nicoll-Griffith, D. A.; Oballa, R. M.; Palmer, J. T.; Percival, M. D.; Riendeau, D.; Robichaud, J.; Rodan, G. A.; Rodan, S. B.; Seto, C.; Thérien, M.; Truong, V.-L.; Venuti, M. C.; Wesolowski, G.; Young, R. N.; Zamboni, R.; Black, W. C. The Discovery of Odanacatib (MK-0822), a Selective Inhibitor of Cathepsin K. Bioorg. Med. Chem. Lett. 2008, 18 (3), 923 – 928. https://doi.org/10.1016/j.bmcl.2007.12.047.
|
|
- Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58 (21), 8315 – 8359. https://doi.org/10.1021/acs.jmedchem.5b00258.
|
|
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116 (2), 422 – 518. https://doi.org/10.1021/acs.chemrev.5b00392.
|
|
- Han, J.; Remete, A. M.; Dobson, L. S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V. A.; O’Hagan, D. Next Generation Organofluorine Containing Blockbuster Drugs. J. Fluorine Chem. 2020, 239, 109639. https://doi.org/10.1016/j.jfluchem.2020.109639.
|
- Sakai, T.; Yan, F.; Kashino, S.; Uneyama, K. Asymmetric Reduction of 2-(N-Arylimino)-3,3,3-Trifluoropropanoic Acid Esters Leading to Enantiomerically Enriched 3,3,3-Trifluoroalanine. Tetrahedron 1996, 52 (1), 233 – 244. https://doi.org/10.1016/0040-4020(95)00866-7.
|
- Pajkert, R.; Röschenthaler, G.-V. Synthesis of Novel α-CF3-Trifluoroalanine Derivatives Containing N-(Diethoxyphosphoryl)Difluoroacetyl Group. J. Fluorine Chem. 2010, 131 (12), 1362–1367. https://doi.org/10.1016/j.jfluchem.2010.09.010.
|
- Cherednichenko, A. S.; Bezgubenko, L. V.; Rusanov, E. B.; Onys’ko, P. P.; Rassukana, Y. V. Enantiomeric N - Tert -Butylsulfinyl Imines of Methyl Trifluoropyruvate: Promising Building Blocks in Asymmetric Synthesis of α-Trifluoromethylated Amino Acids and Derivatives. ChemistrySelect 2020, 5 (43), 13569 – 13574. https://doi.org/10.1002/slct.202003500.
|
- Rassukana, Y. Methyl α-Iminotrifluoropropionate: A Novel Convenient Building Block for the Preparation of Functionalized Derivatives Bearing a Trifluoroalanine Residue. Synthesis 2011, 2011 (21), 3426 – 3428. https://doi.org/10.1055/s-0030-1260249.
|
- Rassukana, Y. V.; Yelenich, I. P.; Synytsya, A. D.; Onys’ko, P. P. Fluorinated NH-Iminophosphonates and Iminocarboxylates: Novel Synthons for the Preparation of Biorelevant α-Aminophosphonates and Carboxylates. Tetrahedron 2014, 70 (18), 2928 – 2937. https://doi.org/10.1016/j.tet.2014.03.030.
|
- Rassukana, Y. V.; Bezgubenko, L. V.; Onys’ko, P. P.; Synytsya, A. D. Cycloaddition of N-Substituted Imines of Trifluoropyruvate with Diazomethane: Efficient Synthesis of 2-(Trifluoromethyl)Aziridine-2-Carboxylates. J. Fluorine Chem. 2013, 148, 14 – 18. https://doi.org/10.1016/j.jfluchem.2013.01.019.
|
- Osipov, S. N.; Kolomiets, A. F.; Fokin, A. V. Cycloaddition Reactions of Methyl 2-N-Trifluoroacetyliminotrifluoropropionate. Russ. Chem. Bull. 1988, 37 (1), 122 – 126. https://doi.org/10.1007/BF00962670.
|
- Rassukana, Y. V.; Bezgubenko, L. V.; Stanko, O. V.; Rusanov, E. B.; Kulik, I. B.; Onys’ko, P. P. Diastereoselective Cycloaddition of (S)-N-(1-Phenylethylimino)Trifluoropropionate and Trifluoroethylphosphonate with Diazomethane. Tetrahedron: Asymmetry 2017, 28 (4), 555 – 560. https://doi.org/10.1016/j.tetasy.2017.03.009.
|
- Kadaba, P. K. Rational Drug Design and the Discovery of the Δ2-1,2,3-Triazolines, A Unique Class of Anticonvulsant and Antiischemic Agents. Curr. Med. Chem. 2003, 10 (20), 2081 – 2108. https://doi.org/10.2174/0929867033456765.
|
|
- Marsini, M. A.; Reeves, J. T.; Desrosiers, J.-N.; Herbage, M. A.; Savoie, J.; Li, Z.; Fandrick, K. R.; Sader, C. A.; McKibben, B.; Gao, D. A.; Cui, J.; Gonnella, N. C.; Lee, H.; Wei, X.; Roschangar, F.; Lu, B. Z.; Senanayake, C. H. Diastereoselective Synthesis of α-Quaternary Aziridine-2-Carboxylates via Aza-Corey–Chaykovsky Aziridination of N - Tert -Butanesulfinyl Ketimino Esters. Org. Lett. 2015, 17 (22), 5614 – 5617. https://doi.org/10.1021/acs.orglett.5b02838.
|
|
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339 – 341. https://doi.org/10.1107/S0021889808042726.
|
- Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A:Found. Adv. 2015, 71 (1), 3 – 8. https://doi.org/10.1107/S2053273314026370.
|
- Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C:Struct. Chem. 2015, 71 (1), 3 – 8. https://doi.org/10.1107/S2053229614024218.
|
|
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 National University of Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).












