The use of aliphatic aldehydes in the synthesis of new pyran annulated derivatives of 1h-2,1-benzothiazin-4-one 2,2-dioxide via domino-type interactions. The antimicrobial activity of the compounds synthesized

Authors

  • D. A. Lega National University of Pharmacy, Ukraine
  • N. I. Filimonova National University of Pharmacy, Ukraine
  • O. G. Geyderikh National University of Pharmacy, Ukraine
  • V. P. Chernykh National University of Pharmacy, Ukraine
  • L. A. Shemchuk National University of Pharmacy, Ukraine

DOI:

https://doi.org/10.24959/ophcj.16.889

Keywords:

2, 1-benzothiazine 2, 2-dioxide, aliphatic aldehydes, malononitrile, pyran, domino reaction, antimicrobial activity

Abstract

Domino-type Knoevenagel-Michael-hetero-Thorpe-Ziegler and Knoevenagel-hetero-Diels-Alder interactions using 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide and aliphatic aldehydes as initial compounds have been studied. These reactions have led to 2-amino-3-cyano-4H-pyran and 2H-3,4-dihydropyran derivatives, respectively. It has been shown that the three-component one-pot interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)one 2,2-dioxide with saturated aliphatic aldehydes and malononitrile proceeds under rather mild conditions and results in formation of 2-amino-6-ethyl-4-alkyl-4,6-dihydropyrano[3,2-c][2,1]benzothiazin-3-carbonitrile 5,5-dioxides with moderate and high yields. At the same time, the yields of target products decrease with the increase of the length of the aliphatic aldehyde carbon chain. In this regard, the use of citronellal allowed us to obtain the product of the three-component interaction with a low yield. To date, there is no information in the literature about the possible application of aliphatic dialdehydes in such three-component interactions. It has been found that the use of glutaric aldehyde results in the synthesis of a new class of bis-derivatives of 2-amino-4H-pyran, in which two fragments are linked by the polymethylene bridge. The use of α,β-unsaturated aldehydes in the three-component interaction with 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide and malononitrile was accompanied by decrease in the process efficiency compared to saturated aliphatic aldehydes. The target fused 2-amino-3-cyano-4H-pyran was obtained only when α-methylcinnamic aldehyde was used in the reaction. A two-component interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with citronellal has been also studied. It has been shown that this reaction is stereospecific. It proceeds through domino Knoevenagel-heteroDiels-Alder sequence resulting in a new heterocyclic system – 2,2a,3,4,5,6,6a,8-octahydroisochromeno[4,3-c] [2,1]benzothiazine 7,7-dioxide. The study of the antimicrobial activity of the compounds synthesized has allowed finding compounds with a moderate activity against P. aeruginosa і C. albicans.

Downloads

Download data is not yet available.

References

  1. Tietze L. F. Chem. Rev., 1996, Vol. 96, pp.115-136.
  2. Johnson W. S. Angew. Chem., 1976, Vol. 88, pp.33-41.
  3. Heathcock C. H. Angew. Chem., 1992, Vol. 104, pp.675-691.
  4. Fish P. V., Johnson W. S. J. Org. Chem., 1994, Vol. 59, pp.2324-2335.
  5. Tietze L. F., Bachmann J., Wichmann J., Burkhardt O. Synthesis, 1994, Vol. 1994, pp.1185-1194.
  6. Amr A.-G. E., Mohamed A. M., Mohamed S. F., Abdel-Hafez N. A., Hammam A. E.-F. G. Bioorg. Med. Chem., 2006, Vol. 14, pp.5481-5488.
  7. Ray S., Majumder H. K., Chakraborty A. K., Mukhopadhyay S. J. Nat. Prod., 1996, Vol. 59, pp.27-29.
  8. Xu Z. Q., Hollingshead M. G., Borgel S., Elder C., Khilevich A., Flavin M. T. Bioorg. Med. Chem. Lett., 1999, Vol. 9, pp.133-138.
  9. Moon D.-O., Choi Y. H., Kim N.-D., Park Y.-M., Kim G.-Y. International Immunopharmacology, 2007, Vol. 7, pp.506-514.
  10. Isaka M., Tanticharoen M., Kongsaeree P., Thebtaranonth Y. J. Org. Chem., 2001, Vol. 66, pp.4803-4808.
  11. Zhang G., Zhang Y., Yan J., Chen R., Wang S., Ma Y., Wang R. J. Org. Chem., 2012, Vol. 77, pp.878-888.
  12. Frydman B., L. Marton J., Sun J. S., Neder K., Witiak D. T., Liu A. A., Wang H.-M., Mao Y., Wu H.-Y., Sanders M. M., Liu L. F. Cancer Research, 1997, Vol. 57, pp.620-627.
  13. Makino M., Fujimoto Y. Phytochemistry, 1999, Vol. 50, pp.273-277.
  14. Kemnitzer W., Drewe J., Jiang S., Zhang H., Grundy C. C., Labreque D., Bubenick M., Attardo G., Denis R., Lamothe S., Gourdeau H., Tseng B., Kasibhatla S., Cai S. X. J. Med. Chem., 2008, Vol. 51, pp.417.
  15. Lumb J.-P., Choong K. C., Trauner D. J. Am. Chem. Soc., 2008, Vol. 130, pp.9230-9231.
  16. Smith C. W., Bailey J. M., Billingham M. E. J., Chandrasekhar S., Dell C. P., Harvey A. K., Hicks C. A., Kingston A. E., Wishart G. N. Bioorg. Med. Chem. Lett., 1995, Vol. 5, pp.2783-2788.
  17. Shemchuk L. A., Lega D. A., Redkin R. G., Chernykh V. P., Shishkin O. V., Shishkina S. V. Tetrahedron, 2014, Vol. 70, pp.8348-8353.
  18. Lega D. A., Gorobets N. Y., Chernykh V. P., Shishkina S. V., Shemchuk L. A. RSC Adv., 2016, Vol. 6, pp.16087-16099.
  19. Lega D. A., Chernykh V. P., Shemchuk L. A. Journal of Organic and Pharmaceutical Chemistry, 2016, Vol. 14, pp.6-16.
  20. Pieroni M., Sabatini S., Massari S., Kaatz G. W., Cecchetti V., Tabarrini O. Med. Chem. Comm., 2012, Vol. 3, pp.1092-1097.
  21. Ukrainets I. V., Petrushova L. A., Dzyubenko S. P., Sim G. Chem. Heterocycl. Compd. (N. Y., NY, U. S.), 2014, Vol. 50, pp.103-110.
  22. Bihani M., Bora P. P., Bez G., Askari H. C. R. Chim., 2013, Vol. 16, pp.419-426.
  23. Brahmachari G., Banerjee B. ACS Sustainable Chemistry & Engineering, 2013, Vol. 2, pp.411-422.
  24. Kuthan J., Šebek P., Böhm S. In Adv. Heterocycl. Chem., ed. R. K. Alan, Academic Press, 1995, Vol. 62, pp.19-135.
  25. Litvinov Y. M., A. Shestopalov M. In Adv. Heterocycl. Chem., ed. K. Alan, Academic Press, 2011, Vol. 103, pp.175-260.
  26. Dyachenko V. D., Chernega A. N. Russ. J. Org. Chem., Vol. 42, pp.567-576.
  27. Undale K. A., Park Y., Park K., Dagade D. H., Pore D. M. Synlett, 2011, Vol. 2011, pp.791-796.
  28. Matiychuk V. S., Lesyk R. B., Obushak M. D., Gzella A., Atamanyuk D. V., Ostapiuk Y. V., Kryshchyshyn A. P. Tetrahedron Lett., 2008, Vol. 49, pp.4648-4651.
  29. Sabitha G., Venkata Reddy E., Fatima N., Yadav J. S., Krishna K. V. S. R., Kunwar A. C. Synthesis, 2004, Vol. 2004, pp.1150-1154.
  30. Tietze L. F. J. Heterocycl. Chem., 1990, Vol. 27, pp.47-69.
  31. Bey E. A., Bentle M. S., Reinicke K. E., Dong Y., Yang C. R., Girard L., Minna J. D., Bornmann W. G., Gao J., Boothman D. A. Proc. Natl. Acad. Sci. U.S.A., 2007, Vol. 104, p.11832.
  32. Medda S., Mukhopadhyay S., Basu M. K. J. Antimicrob. Chemother., 1999, Vol. 44, p.791.
  33. TePaske M. R., Gloer J. B., Wicklow D. T., P. Dowd F. Tetrahedron Lett., 1991, Vol. 32, pp.5687-5690.
  34. Tietze L.-F., von Kiedrowski G., Harms K., Clegg W., Sheldrick G. Angew. Chem., Int. Ed. Engl., 1980, Vol. 19, pp.134-135.
  35. Микробиология: Руководство к лабораторным занятиям: Учеб. пособ. для студ. высш. учеб. заведений / И. Л. Дикий, И. И. Сидорчук, И. Ю. Холупяк, Х.: Изд-во НФаУ; Золотые страницы, 2002, c.153.
  36. Компендіум on-line. – [Електронний ресурс]. – Режим доступу до ресурсу: http://compendium.com.ua/akt/68/2330/dimethylis-sulfoxidum

Downloads

Published

2016-06-21

How to Cite

(1)
Lega, D. A.; Filimonova, N. I.; Geyderikh, O. G.; Chernykh, V. P.; Shemchuk, L. A. The Use of Aliphatic Aldehydes in the Synthesis of New Pyran Annulated Derivatives of 1h-2,1-Benzothiazin-4-One 2,2-Dioxide via Domino-Type Interactions. The Antimicrobial Activity of the Compounds Synthesized. J. Org. Pharm. Chem. 2016, 14, 29-40.

Issue

Section

Original Researches