The study of calixarenes complexation with phenols by RP HPLC

Authors

  • O. I. Kalchenko Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • S. O. Cherenok Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • A. V. Solovyov University of California, United States
  • S. Yu. Suikov Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. I. Kalchenko Institute of Organic Chemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.17.910

Keywords:

Calixarenes, phenols, inclusion complexes, binding constants, molecular modeling

Abstract

The Host-Guest complexation of octakis(diphenoxyphosphoryloxy)tetramethylcalix[4]resorcinarene, 5,17-bis-(N-tolyliminomethyl)-25,27-dipropoxycalix[4]arene and 5,11,17,23-tetrakis(diisopropoxyphosphonyl)-25,26,27,28-tetrapropoxycalix[4]arene with a series of 11 phenols (phenol, p-fluorophenol, p-chlorophenol, p-bromophenol, pyrogallol, p-cresol, p-aminophenol, p-nitrophenol, salicylic aldehyde, guaiacol and veratrole) has been studied by the high-performance liquid chromatography (RP HPLC) method. Chromatographic characteristics and log P of industrial phenols have been determined. Using the relationship of the phenol retention factor k’ vs the calixarene concentration in the mobile phase the stability constants of the supramolecular complexes KA (29-331 M-1) have been determined. The stability constants of the calixarene complexes show that the Host-Guest interaction strongly depends on the nature of the substituents in the Host and Guest molecules. Calixresorcinarene functionalized by diphenoxyphosphoryl groups and calixarene containing tolyliminomethyl groups formed more stable complexes with some phenols compared to calixarene functionalized by diisopropoxyphosphonyl groups. In accordance with the molecular modeling data the complexation does not change the C2v flattened-cone conformation of the calixarene skeleton. The Host-Guest complexes are stabilized by the intermolecular hydrogen bonds of phenolic OH groups with oxygen atoms of P = O groups at the upper rim, and OH groups at the lower rim of the macrocycle. Hydrophobic interactions also participate in the complexation. 

Downloads

Download data is not yet available.

References

  1. Gutsche, C. D. Calixarenes revisited. Monographs in supramolecular chemistry / C. D. Gutsche ; ed. J. F. Stoddart. –Cambridge, 1998. doi: 10.1039/9781847550293.
  2. Calixarenes and beyond / eds. P. Neri, J. L. Sessler, M.–X. Wang. – Springer, 2016. doi: 10.1007/978–3–319–31867–7.
  3. Complexation of calix[4]arenehydroxymethyl–phosphonic acids with amino acids. Binding constants determination of the complexes by HPLC method / O. Kalchenko, S. Cherenok, O. Yushchenko, V. Kalchenko // J. Incl. Phenom. – 2012. – Vol. 76, Issue 1–2. – Р. 29–36. doi: 10.1007/s10847–012–0169–x.
  4. Kalchenko, O. I. A comparative study of the determination of the stability constants of inclusion complexes of p–sulphonatocalix[4]arene with aminoacids by RP HPLC and 1H NMR / O. I. Kalchenko, F. Perret, A. W. Coleman // J. Chem. Soc., Perkin Trans. 2. – 2001. – Issue 3. – P. 258–263. doi: 10.1039/b005497f.
  5. Recognition of amino acids by functionalized calixarenes / L. Mutihac, J. H. Lee, J. S. Kim, J. Vicens // Chem. Soc. Rev. – 2011. – Vol. 40, Issue 5. – P. 2777. doi: 10.1039/c0cs00005a.
  6. Binding of dipeptides and tripeptides containing lysine or arginine by p–sulfonatocalixarenes in water: NMR and microcalorimetric studies / N. Douteau–Guevel, F. Perret, A. W. Coleman et al. // J. Chem. Soc. Perkin Trans. 2. – 2002. – Issue 3. – P. 524–532. doi: 10.1039/b109553f.
  7. Sansone, F. Calixarenes in bioorganic and biomimetic chemistry / F. Sansone, M. Segura, R. Ungaro // Calixarenes 2001. – Springer, 2001. – P. 496–512. doi: 10.1007/0–306–47522–7_27.
  8. Complexation of calix[4]arenephosphonous acids with 2,4–dichlorophenoxyacetic acid and atrazine in water / O. I. Kalchenko, A. V. Solovyov, S. A. Cherenok et al. // J. Incl. Phenom. – 2003. – Vol. 46, Issue 1. – P. 19–25.
  9. Kаlchеnkо, V. Calixarene receptors of environmentally hazardous and bio–relevant molecules and ions / V. Kаlchеnkо // Pure Appl. Chem. – 2008. – Vol. 80, Issue 7. – P. 1449–1458. doi: 10.1351/pac200880071449.
  10. Complexation and extraction of non–ferrous metals by calix[n]arene phosphine oxides. / G. A. Kostin, T. V. Us, T. M. Korda et al. // J. Incl. Phenom. – 2010. – Vol. 68, Issue 1–2. – P. 131–137. doi: 10.1007/s10847–010–9755–y.
  11. Diamond, D. Peer reviewed: calixarenes: designer ligands for chemical sensors / D. Diamond, K. Nolan // Anal. Chem. – 2001. – Vol. 73, Issue 1. – P. 22A–29A. doi: 10.1021/ac012376g.
  12. Calix[n]arenes as Protein Sensors / A. W. Coleman, F. Perret, M. Moussa et al. // Top. Curr. Chem. – 2007. – Vol. 277. – P. 31–88.
  13. Zadmard, R. Nanomolar protein sensing with embedded receptor molecules / R. Zadmard, T. Schrader // J. Amer. Chem. Soc. – 2005. – Vol. 127, Issue 3. – P. 904–915. doi: 10.1021/ja045785d.
  14. Perret, F. Biochemistry of the para–sulfonato–calix[n]arenes / F. Perret, A. N. Lazar, A. W. Coleman // Chem. Commun. – 2006. – Issue 23. – P. 2425. doi: 10.1039/b600720c.
  15. Rodik, R. V. Calixarenes in bio–medical researches / R. V. Rodik, V. I. Boyko, V. I. Kаlchеnkо // Curr. Med. Chem. – 2009. – Vol. 16, Issue 13. – P. 1630–1655. doi: 10.2174/092986709788186219.
  16. Da Silva, E. Biopharmaceutical applications of calixarenes / E. Da Silva, A. N. Lazar, A. W. Coleman // J. Drug Deliv. Sci. and Technol. – 2004. – Vol. 14, Issue 1. – P. 3–20. doi: 10.1016/s1773–2247(04)50001–1.
  17. Weber, M. Phenol. Ullmann’s encyclopedia of industrial chemistry / M. Weber, M. Kleine–Boymann. – Wiley–VCH, 2004. doi: 10.1002/14356007.a19_299.pub2.
  18. Hättenschwiler, S. The role of polyphenols in terrestrial ecosystem nutrient cycling /S. Hättenschwiler, P. M. Vitousek // Trends in Ecology & Evolution. – 2000. – Vol. 15, Issue 6. – P. 238–243. doi: 10.1016/s0169–5347(00)01861–9.
  19. Klepacka, J. Phenolic compounds as cultivar– and variety–distinguishing factors in some plant products / J. Klepacka, E. Gujska, J. Michalak // Plant Foods for Human Nutrition. – 2011. – Vol. 66, Issue 1. – P. 64–69. doi: 10.1007/s11130–010–0205–1.
  20. Gutfinger, T. Polyphenols in olive oils / T. Gutfinger // J. of the American Oil Chemists Society. – 1981. – Vol. 58, Issue 11. – P. 966–968. doi: 10.1007/bf02659771.
  21. Mishra, B. B. Natural products: an evolving role in future drug discovery / B. B. Mishra, V. K. Tiwari // Eur. J. Med. Chem. – 2011. – Vol. 46, Issue 10. – P. 4769–47807. doi: 10.1016/j.ejmech.2011.07.057.
  22. Wildman, R. E. C. Handbook of nutraceuticals and functional foods / R. E. C. Wildman. – 2nd ed. – CRC Press, 2006. doi: 10.1201/9781420006186.
  23. Frank, E. Paracetamol: a curriculum resource / E. Frank. –Cambridge, 2002. – P. 764.
  24. Lead identification of conformationally restricted β–lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects / M. Carr, L. M. Greene, A. J. S. Knox et al. // Eur. J. Med. Chem. – 2010. – Vol. 45, Issue 12. – P. 5752–5766. doi: 10.1016/j.ejmech.2010.09.033.
  25. Study of the complexation of octakis(diethoxyphosphoryloxy)–tetramethylcalix[4]resorcinarene with benzene derivatives by RP HPLC method / O. I. Kalchenko, A. V. Solovyov, J. Lipkowski, V. I. Kаlchеnkо // J. Incl. Phenom. – 1999. – Vol. 34, Issue 3. – P. 259–266.
  26. Upper rim alpha–hydroxy of alpha–aminophosphonic acid derivatives of calix[4]arenas / L. N. Markovsky, V. I. Kаlchеnkо, A. V. Solovyov et al. // Anales de Quimica. – 1998. – Vol. 94, Issue 3. – P. 164 –170.
  27. Synthesis and complexation of amphiphilic calix[4]arene phosphonates with organic molecules in solutions and Langmuir–Blodgett films / A. V. Solovyov, S. O. Cherenok, O. I. Kalchenko et al. // J. Mol. Liq. – 2011. – Vol. 159, Issue 2. – P. 117–123. doi: 10.1016/j.molliq.2010.12.007.
  28. Host–Guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed–phase high–performance liquid chromatography / J. Lipkowski, O. I. Kalchenko, J. Slowikowska et al. // J. Phys. Org. Chem. – 1998. – Vol. 11, Issue 6. – P. 426–437. doi: 10.1002/(sici)1099–1395(199806)11:6<426::aid–poc963>3.3.co;2–i.
  29. Hansch, C. Exploring QSAR: hydrophobic, electronic, and steric constants (ACS Professional Reference Book) / C. Hansch, A. Leo, D. H. Hoekman. – American Chemical Society, 1995. – 348 p.
  30. Garst, J. Accurate, wide–range, automated, high–performance liquid chromatographic method for the estimation of octanol/water partition coefficients I: Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method / J. Garst,E. Wilson// J. Pharm. Sci. – 1984. – Vol. 73, Issue 11. – P. 1616–1623. doi: 10.1002/jps.2600731133.
  31. Unger, S. H. Simple procedure for determining octanol– aqueous partition coefficients, distribution and ionization coefficients with reverse phase high performance liquid chromatography / S. H. Unger, J. R. Cook, J. S. Hollenberg // J. Pharm. Sci. – 1978. – Vol. 67, Issue 10. – P. 1364–1367. doi: 10.1002/jps.2600671008.
  32. HyperChem Community. – Available at : http://www.hyper.com/Download/AllDownloads/tabid/470/Default.aspx.
  33. Inclusion complex of 1,2,3–trihydroxybenzene with α– and β–cyclodextrin / T. Stalin et al. // Indian Journal of Chemistry. – 2006. – Vol. 45, Issue 5. – P. 1113–1120.

Downloads

Published

2017-03-23

How to Cite

(1)
Kalchenko, O. I.; Cherenok, S. O.; Solovyov, A. V.; Suikov, S. Y.; Kalchenko, V. I. The Study of Calixarenes Complexation With Phenols by RP HPLC. J. Org. Pharm. Chem. 2017, 15, 45-51.

Issue

Section

Original Researches