Synthesis of heteryl derivatives of 2,5-disubstituted 1,3,4-okasadiazole

Authors

  • Y. V. Karpenko Zaporizhzhia State Medical University, Ukraine
  • L. O. Omelyanchik Zaporizhzhia State Medical University, Ukraine

DOI:

https://doi.org/10.24959/ophcj.17.917

Keywords:

synthesis, 2, 5-disubstituted 1, 3, 4-oksadiazole, biological activity

Abstract

At the present stage of development of organic chemistry there are a lot of basic synthetic approaches to synthesis of 1,3,4-oksadiazole derivatives with a wide spectrum of biological activity. The heterocyclic systems which contain 1,3,4-oksadiazole nucleus have a rich synthetic history and they are characterized by a wide range of methods of synthesis. In the review for the first time have been systematized and summarized literature sources for the chemistry of heteryl derivatives of 2,5-disubstituted 1,3,4-oxadiazole as important synthetic substrates and precursors for the design of biologically active substances. There have been considered the main approaches to synthesis of this series of compounds, which consist in the intramolecular dehydration of 1,2-diacylhydrazine, in the interaction of hydrazides of heterylcarbonic acids with carbonyl dichloride, orthoethers, carbon (IV) sulfide and in the formation of an oxadiazole nucleus based on functional acylthiosemicarbazide and hydrazone. A significant emphasis is concentrated on the cyclodehydration reaction of N,N’-diacylhydrazide using dehydrating agents, which are a powerful tool for constructing their synthetically and biologically attractive derivatives.
There have been analyzed in detail the methods for the preparation of acridone derivatives which contain the 1,3,4-oxadiazole fragment, have been delineated their preparative boundaries and has been revealed the biological potential. It is important to note that the processes of heteryl functionalization are new in the chemistry of 1,3,4-oxadiazole and they allow us to obtain new bioperspective hybrid structures. Analysis of literature data shows that the derivatives of 2,5-disubstituted 1,3,4-oxadiazole are considered as promising substances with antibacterial, fungicidal, anti-inflammatory, hypoglycemic, antimalarial activity. The search for biologically active substances in this series of compounds is expedient and has practical and theoretical significance.

Downloads

Download data is not yet available.

References

  1. Nagaraj, Chaluvaraiu, K. C., Niranian, M. S., Kiran S. (2011). 1,3,4–Oxadiazole: A potent drug candidate with various pharmacological activities.
  2. International Journal of Pharmacy and Pharmaceutical Sciences, 3 (3), 9–16.
  3. Boström, J., Hogner, A., Llinàs, A., Wellner, E., Plowright, A. T. (2012). Oxadiazoles in Medicinal Chemistry. Journal of Medicinal Chemistry, 55 (5),
  4. –1830. doi: 10.1021/jm2013248
  5. Gaonkar, S. L., Rai, K. M. L., Prabhuswamy, B. (2006). Synthesis and antimicrobial studies of a new series of 2–{4–[2–(5–ethylpyridin–2–yl)
  6. ethoxy]phenyl}–5–substituted–1,3,4–oxadiazoles. European Journal of Medicinal Chemistry, 41 (7), 841–846. doi: 10.1016/j.ejmech.2006.03.002
  7. Zou, X.–J., Lai, L.–H., Jin, G.–Y., Zhang, Z.–X. (2002). Synthesis, Fungicidal Activity, and 3D–QSAR of Pyridazinone–Substituted 1,3,4–Oxadiazoles
  8. and 1,3,4–Thiadiazoles. Journal of Agricultural and Food Chemistry, 50 (13), 3757–3760. doi: 10.1021/jf0201677
  9. Bala, S., Saini, V., Kamboj, S. et al. (2012). Review exploring antiinflammatory potential of 1,3,4–oxadiazole derivatives as promising lead. International
  10. Journal of Pharmacy and Pharmaceutical Sciences, 17 (2), 84–89.
  11. Husain, A., Ajmal, M. (2009). Synthesis of novel 1,3,4–oxadiazole derivatives and their biological properties. Acta Pharmaceutica, 59 (2).
  12. doi: 10.2478/v10007–009–0011–1
  13. Johns, B. A. (2004). Pat. WO2004101512 A2. Naphthyridine integrase inhibitors. declared 12.05.2004; published 25.11.2004.
  14. Luo, Z.–H., He, S.–Y., Chen, B.–Q., Shi, Y.–P., Liu, Y.–M., Li, C.–W., Wang, Q.–S. (2012). Synthesis and in Vitro Antitumor Activity of 1,3,4–Oxadiazole
  15. Derivatives Based on Benzisoselenazolone. Chemical & pharmaceutical bulletin, 60 (7), 887–891. doi: 10.1248/cpb.c12–00250
  16. Ali, K. A., Ragab, E. A., Farghaly, T. A. et al. (2011). Synthesis of new functionalized 3–subsitituted [1,2,4]triazolo[4,3–a]pyrimidine dreivatives:
  17. potential antihypertensive agents. Acta Poloniae Pharmaceutica, 68 (2), 237–247
  18. Zarghi, A., Faizi, M., Shafaghi, B., Ahadian, A., Khojastehpoor, H. R., Zanganeh, V., Shafiee, A. (2005). Design and synthesis of new 2–substituted–5–
  19. (2–benzylthiophenyl)–1,3,4–oxadiazoles as benzodiazepine receptor agonists. Bioorganic & Medicinal Chemistry Letters, 15 (12), 3126–3129.
  20. doi: 10.1016/j.bmcl.2005.04.018
  21. Girges, M. M. (1994). Synthesis and pharmacological evaluation of novel series of sulfonate ester–containing 1,3,4–oxadiazole derivatives with
  22. anticipated hypoglycemic activity. Arzneimittelforschung, 44 (4), 490–495
  23. Carroll, F. I., Gray, J. L., Abrahm, P. et al. (1993). 3–Aryl–2–(3’–substituted–1’,2’,4’–oxadiazol–5’–yl)tropane analogs of cocaine: affinities at the
  24. cocaine binding site at the dopamine, serotonin, and norepinephrine transporters. Journal of Medicinal Chemistry, 36 (20), 2886–2890.
  25. doi: 10.1021/jm00072a007
  26. Savarino, A. (2006). A historical sketch of the discovery and development of HIV–1 integrase inhibitors. Expert Opinion on Investigational Drugs,
  27. (12), 1507–1522. doi: 10.1517/13543784.15.12.1507
  28. James, N. D., Growcott, J. W. (2009). Zibotentan. Drugs of the Future, 34 (8), 624. doi: 10.1358/dof.2009.034.08.1400202
  29. Brandenberger, H., Maes, R. A. A. (1997). Clinical Biochemistry: Analytical Toxicology for Clinical, Forensic and Pharmaceutical Chemists. Walter
  30. de Gruyter: Berlin, 846.
  31. Ducharme, Y., Blouin, M., Brideau, C., Châteauneuf, A., Gareau, Y., Grimm, E. L., Friesen, R. W. (2010). The Discovery of Setileuton, a Potent and
  32. Selective 5–Lipoxygenase Inhibitor. ACS Medicinal Chemistry Letters, 1 (4), 170–174. doi: 10.1021/ml100029k
  33. Adelstein, G. W., Yen, C. H., Dajani, E. Z., Bianchi, R. G. (1976). 3,3–Diphenyl–3–(2–alkyl–1,3,4–oxadiazol–5–yl)propylcycloalkylamines, a novel
  34. series of antidiarrheal agents. Journal of Medicinal Chemistry, 19 (10), 1221–1225. doi: 10.1021/jm00232a010
  35. Piatnitski, E., Kiselyov, A., Doody J. et al. (2004). Pat. WO2004052280. Anti–angiogenic compounds and their use in cancer treatment. declared
  36. 12.2003; published 24.06.2004.
  37. Extended Spectrum Beta–lactamases: Definition, Classification and Epidemiology. (2015). Current Issues in Molecular Biology. doi: 10.21775/
  38. cimb.017.011
  39. Nesynov, E. P., Grekov, A. P. (1964). Uspekhi khimii, 33 (10), 1184–1197.
  40. Beal, D. M., Bryans, J. S., Johnson, P. S., Newman, J., Pasquinet, C., Peakman, T. M., Wheeler, S. (2011). Preparation of triazolobenzodiazepine
  41. derivatives as Vasopressin V1a antagonists. Tetrahedron Letters, 52 (45), 5913–5917. doi: 10.1016/j.tetlet.2011.08.011
  42. Giudice, M. R. D., Gatta, F., Settimj, G. (1990). New tetracyclic compounds containing the β–carboline moiety. Journal of Heterocyclic Chemistry, 27 (4),
  43. –973. doi: 10.1002/jhet.5570270427
  44. Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S., Kumari, N. S. (2008). Antimicrobial studies of 2,4–dichloro–5–fluorophenyl containing
  45. oxadiazoles. European Journal of Medicinal Chemistry, 43 (1), 25–31. doi: 10.1016/j.ejmech.2007.03.013
  46. Sharba, A., Al–Bayati, R., Aouad, M., Rezki, N. (2005). Synthesis of Oxadiazoles, Thiadiazoles and Triazoles Derived from Benzo[b]thiophene.
  47. Molecules, 10 (9), 1161–1168. doi: 10.3390/10091161
  48. Sysoev, P. I. (2015). Sintez geterotcyklicheskikh soedinenii na osnove proizvodnykh akridonuksusnoi kisloty. Moscow, 140.
  49. Al–Araji, S. M., Dawood, R. S. (2013). Synthesis and characterization of new heterocyclic thioxanthone derivatives. Baghdad Science Journal, 10 (3), 779–791.
  50. Elderfild, R. (1974). Geterotcyklicheskie soedinenia. Moscow, 7, 499.
  51. Sugihara, A. (1966). Synthesis of Nitrofuran Derivatives. VI. : Synthesis of 1, 3, 4–Oxadiazoles. Yakugaku zasshi, 86 (6), 496–504. doi: 10.1248/
  52. yakushi1947.86.6_496
  53. Kudelko, A., Zieliński, W. (2012). Microwave–assisted synthesis of 2–styryl–1,3,4–oxadiazoles from cinnamic acid hydrazide and triethyl orthoesters.
  54. Tetrahedron Letters, 53 (1), 76–77. doi: 10.1016/j.tetlet.2011.10.152
  55. Desai, N. C., Dodiya, A. M. (2014). Synthesis, characterization and in vitro antimicrobial screening of quinoline nucleus containing 1,3,4–
  56. oxadiazole and 2–azetidinone derivatives. Journal of Saudi Chemical Society, 18 (5), 425–431. doi: 10.1016/j.jscs.2011.09.005
  57. Suresh Kumar, G. V., Rajendraprasad, Y., Mallikarjuna, B. P., Chandrashekar, S. M., Kistayya, C. (2010). Synthesis of some novel 2–substituted–5–
  58. [isopropylthiazole] clubbed 1,2,4–triazole and 1,3,4–oxadiazoles as potential antimicrobial and antitubercular agents. European Journal of
  59. Medicinal Chemistry, 45 (5), 2063–2074. doi: 10.1016/j.ejmech.2010.01.045
  60. Guin, S., Ghosh, T., Rout, S. K., Banerjee, A., Patel, B. K. (2011). Cu(II) Catalyzed Imine C–H Functionalization Leading to Synthesis of 2,5–Substituted
  61. ,3,4–Oxadiazoles. Organic Letters, 13 (22), 5976–5979. doi: 10.1021/ol202409r
  62. Dobrotă, C., Paraschivescu, C. C., Dumitru, I., Matache, M., Baciu, I., Ruţă, L. L. (2009). Convenient preparation of unsymmetrical 2,5–disubstituted
  63. ,3,4–oxadiazoles promoted by Dess–Martin reagent. Tetrahedron Letters, 50 (17), 1886–1888. doi: 10.1016/j.tetlet.2009.02.054
  64. Naresh Kumar, R., Poornachandra, Y., Nagender, P., Santhosh Kumar, G., Krishna Swaroop, D., Ganesh Kumar, C., Narsaiah, B. (2016). Synthesis
  65. of novel nicotinohydrazide and (1,3,4–oxadiazol–2–yl)–6–(trifluoromethyl)pyridine derivatives as potential anticancer agents. Bioorganic &
  66. Medicinal Chemistry Letters, 26 (19), 4829–4831. doi: 10.1016/j.bmcl.2016.08.020
  67. Kiselyov, A. S., Semenova, M. N., Chernyshova, N. B., Leitao, A., Samet, A. V., Kislyi, K. A., Semenov, V. V. (2010). Novel derivatives of 1,3,4–oxadiazoles
  68. are potent mitostatic agents featuring strong microtubule depolymerizing activity in the sea urchin embryo and cell culture assays. European
  69. Journal of Medicinal Chemistry, 45 (5), 1683–1697. doi: 10.1016/j.ejmech.2009.12.072
  70. Farshori, N. N., Banday, M. R., Ahmad, A., Khan, A. U., Rauf, A. (2010). Synthesis, characterization, and in vitro antimicrobial activities of 5–
  71. alkenyl/hydroxyalkenyl–2–phenylamine–1,3,4–oxadiazoles and thiadiazoles. Bioorganic & Medicinal Chemistry Letters, 20 (6), 1933–1938.
  72. doi: 10.1016/j.bmcl.2010.01.126
  73. Banerjee, A. G., Das, N., Shengule, S. A., Sharma, P. A., Srivastava, R. S., Shrivastava, S. K. (2016). Design, synthesis, evaluation and molecular
  74. modelling studies of some novel 5,6–diphenyl–1,2,4–triazin–3(2H)–ones bearing five–member heterocyclic moieties as potential COX–2
  75. inhibitors: A hybrid pharmacophore approach. Bioorganic Chemistry, 69, 102–120. doi: 10.1016/j.bioorg.2016.10.003
  76. Salimon, J., Salih, N., Yousif, E., Hameed, A., Kreem, A. (2010). Synthesis and pharmacological evaluation of 9(10H)–acridone bearing 1,3,4–
  77. oxadiazole derivatives as antimicrobial agents. Arabian Journal of Chemistry, 3 (4), 205–210. doi: 10.1016/j.arabjc.2010.06.001
  78. Hurenko, A. O. (2015). Vlastyvosti pirazolo[3,4–d][1,2,3]tryazyn–4–oniv ta produkty ikh peretvoren. Kyiv, 135.
  79. Koparır, M., Çetin, A., Cansız, A. (2005). 5–Furan–2yl[1,3,4]oxadiazole–2–thiol, 5–Furan–2yl–4H [1,2,4] triazole–3–thiol and Their Thiol–Thione
  80. Tautomerism. Molecules, 10 (2), 475–480. doi: 10.3390/10020475
  81. Vosooghi, M., Akbarzadeh, T., Fallah, A. et al. (2005). Synthesis of substituted 1,3,4–oxadiazole, 1,3,4–thiadiazole and 1,2,4–triazole derivatives
  82. as potential antimicrobial agents. Journal of Sciences, Islamic Republic of Iran, 16 (2), 145–151.
  83. Saitoh, M., Kunitomo, J., Kimura, E., Hayase, Y., Kobayashi, H., Uchiyama, N., Itoh, F. (2009). Design, synthesis and structure–activity relationships
  84. of 1,3,4–oxadiazole derivatives as novel inhibitors of glycogen synthase kinase–3β. Bioorganic & Medicinal Chemistry, 17 (5), 2017–2029.
  85. doi: 10.1016/j.bmc.2009.01.019
  86. Kaplancikli, Z. A. (2011). Synthesis of Some Oxadiazole Derivatives as New Anticandidal Agents. Molecules, 16 (12), 7662–7671. doi: 10.3390/
  87. molecules16097662
  88. Amir, M., Shikha, K. (2004). Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino)
  89. phenyl]acetic acid derivatives. European Journal of Medicinal Chemistry, 39 (6), 535–545. doi: 10.1016/j.ejmech.2004.02.008
  90. Liu, Z.–M., Chen, Q., Chen, C.–N., Tu, H.–Y., Yang, G.–F. (2008). Syntheses of Diheterocyclic Compounds Based on 2–Thioacetohydrazide–5,7–
  91. dimethyl–1,2,4–triazolo[1,5–a]– pyrimidine. Molecules, 13 (6), 1353–1360. doi: 10.3390/molecules13061353
  92. Kerimov, İ., Ayhan–Kılcıgil, G., Özdamar, E. D., Can–Eke, B., Çoban, T., Özbey, S., Kazak, C. (2012). Design and One–Pot and Microwave–Assisted
  93. Synthesis of 2–Amino/5–Aryl–1,3,4–oxadiazoles Bearing a Benzimidazole Moiety as Antioxidants. Archiv Der Pharmazie, 345 (7), 549–556.
  94. doi: 10.1002/ardp.201100440
  95. Yan, H., Kou, K., Pu, W. (2013). Study on a novel emitter based on rhenium complex: Synthesis, molecular structure, photophysical feature and
  96. electroluminescence performance. Journal of Luminescence, 143, 63–70. doi: 10.1016/j.jlumin.2013.04.034
  97. Imrich, J., Fröhlichová, Z., Tomaščiková, J., Kristian, P., Danihel, I., Böhm, S., D. Klika, K. (2009). Synthesis and Properties of Novel Biologically
  98. Interesting Polycyclic 1,3,4–Oxadiazoles Containing Acridine/Acridone Moieties. Heterocycles, 77 (2), 1019. doi: 10.3987/com–08–s(f)80
  99. Shi, Z., Zhao, Z., Huang, M., Fu, X. (2015). Ultrasound–assisted, one–pot, three–component synthesis and antibacterial activities of novel indole
  100. derivatives containing 1,3,4–oxadiazole and 1,2,4–triazole moieties. Comptes Rendus Chimie, 18 (12), 1320–1327. doi: 10.1016/j.crci.2015.09.005
  101. Kudryavtseva, T. N., Sysoev, P. I., Popkov, S. V., Nazarov, G. V., Klimova, L. G. (2015). Synthesis and antimicrobial activity of some acridone derivatives
  102. bearing 1,3,4–oxadiazole moiety. Russian Chemical Bulletin, 64 (6), 1341–1344. doi: 10.1007/s11172–015–1015–2
  103. Kudryavtseva, T., Lamanov, A. (2015). Synthesis of new acridines with fluorine–containing 1,2,4 and 1,3,4– oxadiazole fragment. Fluorine Notes,
  104. –2. doi: 10.17677/fn20714807.2015.02.01
  105. Omelianchyk, L. A. (1991). Sintez, svoistva i biologicheskaia aktivnost N– i S – zameshchenykh akridina, khinolina, piridina. Zaporozhe, 367.

Published

2017-12-14

How to Cite

(1)
Karpenko, Y. V.; Omelyanchik, L. O. Synthesis of Heteryl Derivatives of 2,5-Disubstituted 1,3,4-Okasadiazole. J. Org. Pharm. Chem. 2017, 15, 21-32.

Issue

Section

Original Researches