The synthetic potential and the biological action of 1(2)-amino-9,10-anthracenediones and their functional derivatives
DOI:
https://doi.org/10.24959/ophcj.17.919Keywords:
1(2)-amino-9, 10-anthracenediones, structural modification, biological activityAbstract
The review has systematized the literature data of the structural modification methods for 1(2)-amino-9,10-anthracenedione derivatives with alkyl, aryl, acyl, sulfur- and nitrogen-containing acyclic and heterocyclic condensed and non-condensing fragments; the results of the experimental studies of the biological activity of this class of compounds have been analyzed. The conditions of alkylation and arylation of the amino group of amino-9,10-anthracenediones are presented. The methods of acylfunctionalization of aminoanthracenediones have been analyzed. The use of bifunctional chloroanhydrides in obtaining various acyclic and heterocyclic derivatives has been shown. The synthetic potential of the dediazonization reaction has been discovered in production of a wide class of derivatives. Much attention has been paid to production of heterocyclic annelated (imidazole, oxazole, thiazole, azine, phenothiazine, pyrazole, phenanthroline, quinoline) and nonannelated (triazene, furane, pyridine, acridine, thiophene, pyrolytic, triazine, quinoxaline, thiazole) derivatives. In addition, the modification of the amino group has been clarified using aryliso(thio)cyanates, and the use of benzoyl isothiocyanates in the synthesis of thiazole, triazole and tetrazole derivatives has been demonstrated. The review shows that compounds of this type have different types of the biological activity. In particular, they are characterized by the antitumor, antiviral, antimicrobial, antifungal, antioxidant, antithrombotic activities.Downloads
References
- Gorelik, M. V. (1983). Khimiia antrakhinonov i ikh proizvodnykh. Moscow: Khimiia, 294.
- Fain, V. Ya. (1999). 9,10–antrakhinony i ikh primeneniie. Moscow: Tcentr fotokhimii, 92.
- Gouda, M. A., Berghot, M. A., Shoeib, A., Elattar, K. M., Khalil, A. M. (2010). Chemistry of 2–aminoanthraquinones. Turkish Journal of Chemistry, 34, 651–709. doi: 10.3906/kim–0912–333
- Vorozhtsov, N. N. (1955). Osnovy sinteza promezhutochnykh produktov i krasitelei. Moscow: GosTehHimIzdat, 840.
- Efros, L. S., Gorelik, M. V. (1979). Khimiia i tekhnologiia promezhutochnykh produktov. Leningrad: Khimiia, 544.
- Sharma, R. K., Salunkhe, M. M. (1999). Solid–liquid phase transfer catalytic reaction of l–aminoanthraquinone with alkyl halides: A case of N–alkylation. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 38 (2), 210–211.
- Niedzialkowski, P., Ossowski, T., Majewski, R., Nowakowska, Z., Schroeder, G. (2011). Thiol–functionalized anthraquinones: mass spectrometry and electrochemical studies. Monatshefte fuer Chemie, 142 (11), 1121–1129. doi: 10.1007/s00706–011–0623–2
- Krasnokutskaya, E. A., Semenischeva, N. I., Filimonov, V. D., Knochel, P. (2007). A New, One–Step, Effective Protocol for the Iodination of Aromatic and Heterocyclic Compounds via Aprotic Diazotization of Amines. Synthesis, 2007 (1), 81–84. doi: 10.1055/s–2006–958936
- Yavari, I., Kowsari, E. (2007). Ionic liquids as novel and recyclable reaction media for N–alkylation of amino–9,10–anthraquinones by trialkyl phosphites. Tetrahedron Letters, 48 (21), 3753–3756. doi: 10.1016/j.tetlet.2007.03.077
- Deinet, J. (1937). 1,3–dihalogen–2–monomethylamino–anthraquinones and process for preparing same. Pat. US 2091235 (A); declared 22.08.1935; published 22.08.1937.
- Bien, H.–S., Stawitz, J., Wunderlich, K. (2000). Anthraquinone Dyes and Intermediates. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a02_355
- Getautis, V., Dashkyavichene, M., Paulauskaite, I., Stanisauskaite, A. (2005). Study of the Products from Reaction of 1(2)–Aminoanthraquinones with 1–Chloro–2,3–Epoxypropane. Chemistry of Heterocyclic Compounds, 41 (4), 426–436. doi: 10.1007/s10593–005–0165–9
- Arai, S., Kato S., Hida, M. B. (1985). Anthraquinone pharmaceutical compounds and uses therefor. Journal of the Chemical Society of Japan, 58, 1458–1463. doi: 10.1246/bcsj.58.1458
- Slavik, V., Arient, J. (1975). Substitution of NH hydrogen in nitrogen derivatives of polycyclic hydrocarbons and quinones. Research Institute of Organic Syntheses, Collection of Czechoslovak Chemical Communications, 40 (4), 1193–1198. doi: 10.1135/cccc19751193
- Denisov, V. I., Tkachenko, T. V., Grechneva, S. A. (2002). Khimiia i Khimicheskaia Tekhnologiia, 45 (6), 39–42.
- Franc, J. V., Koudelkova, V. J. (1979). Thin–layer chromatography of aromatic amines and their derivatives after reactions with 1–fluoro–2,4–dinitrobenzene. Chromatography, 170 (1), 89–97. doi: 10.1016/S0021–9673(00)84241–7
- Lown, J. W. (1988). Anthracycline and Anthracendione–based Anticancer Agents. Amsterdam–Oxford–New York–Tokyo: Elsevier Science Publ. B.V., 752.
- Reubke, K.–J., Stawitz, J. (1983). Process for the preparation of dianthraquinonylamines. Pat. US 4382034 (A); declared 14.09.1981; published 3.05.1983.
- Dixit, A. N., Dhalla, A. M. (2004). Method for preparation of an anthraquinone colorant composition. Pat. US 6861541; declared 01.03. 2005; published 15.01.2004.
- Pearson, A. L., Roush, W. J. (1999). Handbook of Reagents for Organic Synthesis: Activiting Agents and Protecting Groups. Chichester: John Wiley and Sons, 9–16.
- Greene, T. W., Wuts, P. G. M. (1999). Protyective Groups in Organic Synthesis. New York: Wiley, 150.
- Kobayashi, K., Nagato, S., Kawahita, M. (1995). Synthesis of 1–Formyl–1,2–dihydroquinoline Derivatives by a Lewis Acid–Catalyzed Cyclization of o–(1–Hydroxy–2–alkenyl)phenyl Isocyanides. Chemical Letters, 24 (7), 575–576. doi: 10.1246/cl.1995.575
- Chen, B. C., Bendorz, M. S., Zhao, R., Sundeen, J. E., Chen, P., Shen Z., Skoumbourdis, A. P., Barrish, J. C. (2000). A new facile method for the synthesis of 1–arylimidazole–5–carboxylates. Tetrahedron Letters, 41 (29), 5453–5456. doi: 10.1016/S0040–4039(00)00910–2
- Lei, M., Ma, L., Hu, L., (2010). A convenient one–pot synthesis of formamide derivatives using thiamine hydrochloride as a novel catalyst. Tetrahedron Letters, 51 (32), 4186–4188. doi: 10.1016/j.tetlet.2010.06.005
- Hofle, G., Steglish, W., Vorbruggen, H. (1978). 4–Dialkylaminopyridines as Highly Active Acylation Catalysts. Angewandte Chemie International Edition, 17 (8), 569–583. doi: 10.1002/anie.197805691
- Saravanon, P., Singh, V. K. (1999). An efficient method for acylation reactions Tetrahedron Letters, 40 (13), 2611–2614. doi: 10.1016/S0040–4039(99)00229–4
- Vedejs, E., Diver, S. T. (1993). Tributylphosphine: a remarkable acylation catalyst. Journal of the American Chemical Society, 115 (8), 3358–3359. doi: 10.1021/ja00061a056
- Yadav, V. K., Babu, U. G., Mittal, M. (2001). An efficient method for acylation reactions. Tetrahedron, 57, 7047–7051. doi: 10.1016/S0040–4020(01)00677–9
- Shallenberg, E. E., Calvin, M. J. (1955). Ethyl Thioltrifluoroacetate as an Acetylating Agent with Particular Reference to Peptide. Journal of the American Chemical Society, 77 (10), 2779–2783. doi: 10.1021/ja01615a032
- Staab, N. A., Walther, G., Rohr, W. (1962). Synthese von Carbonsäureanhydriden nach der Imidazolidmethode. Chemische Berichte, 95 (8), 2073– 2075. doi: 10.1002/cber.19620950832
- Keumi, T., Shimada, M., Kitajima, H. B. (1990). 2–(Trifluoroacetyloxy)pyridine as a Mild Trifluoroacetylating Reagent of Amines and Alcohols. Chemical Society of Japan, 63 (8), 2252–2256. doi: 10.1246/bcsj.63.2252
- Forbus, T. R., Taylor, S. L., Martin, J. C. (1987). Reactions of the readily accessible electrophile, trifluoroacetyl triflate: a very reactive agent for trifluoroacetylations at oxygen, nitrogen, carbon, or halogen centers. Journal of Organic Chemistry, 52 (19), 4156–4159. doi: 10.1021/jo00228a002
- Waki, J., Mainhofer, J. (1977). Efficient preparation of N–alpha–formylamino acid tert–butyl esters. Journal of Organic Chemistry, 42 (11), 2019– 2020. doi: 10.1021/jo00431a046
- Chen, F. M., Benoiton, N. L. (1979). A general method for formylating sensitive amino acid esters. Synthesis, 1979 (09), 709–710. doi: 10.1055/s–1979–28805
- Chandra, S. A. C., Kumar, A. R., Sathaian, G. (2009). Facile N–formylation of amines using Lewis acids as novel catalysts. Tetrahedron Letters, 50 (50), 7099–7101. doi: 10.1016/j.tetlet.2009.10.006
- Zhan, J., Gunatilaka, A. A. L. (2008). Facile N–formylation of amines using Lewis acids as novel catalysts. Bioorganic & Medicinal Chemistry, 16 (9), 5085–5089. doi: 10.1016/j.bmc.2008.03.030
- Niu, H–T, Su, D. X. (2008). A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Organic and Biomolecular Chemistry, 6 (17), 3038–3040. doi: 10.1039/B808589G
- Saeed, A., Javed, I. J. (1987). A new acylation catalyst. Journal of the Chemical Society – Series Chemical Communications, 2, 114–115. doi: 10.1039/C39870000114
- Kazankov, M. V., Ginodman, L. G., Mustafina, M. Ya. (1981). Zhurnal organicheskoi i farmatcevticheskoi khimii, 17 (2), 306–313.
- Zvarych, V. І., Stasevych, M. V., Lunin, V. V., Novikov, V. P., Vovk, M. V. (2015). N–Acylation of amino–9,10–anthraquinones by system of strong carboxylic acid – ammonium thiocyanate. Zhurnal organichnoi ta farmatsevtichnoi khimii, 13 (2), 35–40.
- Genta, G. R. (1969). Anthraquinone dyestuff manufacture. Pat. US 3426047 (A); declared 4.03.1965; published 4.02.1969.
- Mukhina, O. A., Kumar B. N. N., Arisco, T. M., Valiulin, R. A., Metzel, G. A., Kutateladze, A. G. (2011). Rapid Photoassisted Access to N,O,S–Polyheterocycles with Benzoazocine and Hydroquinoline Cores: Intramolecular Cycloadditions of Photogenerated Azaxylylenes. Angewandte Chemie, International Edition, 50 (40), 9423–9428. doi: 10.1002/anie.201103597
- Barasch, D., Zipori, O., Ringel, I., Ginsburgc, I., Samunid, A., Katzhendler, J. (1999). Novel anthraquinone derivatives with redox–active functional groups capable of producing free radicals by metabolism: are free radicals essential for cytotoxicity? European Journal of Medicinal Chemistry, 34 (7–8), 597–616. doi: 10.1016/S0223–5234(00)80029–X
- Collier, D. A., Neidle, S. (1988). Synthesis, molecular modeling, DNA binding, and antitumor properties of some substituted amidoanthraquinones. Journal of Medicinal Chemistry, 31 (4), 847–857. doi: 10.1021/jm00399a028
- Koeberle, K. (1934). Production of amino–acylaminoanthraquinones. Pat. US 1966125 (A); declared 3.11.1932; published 10.07.1934.
- Schwechten, H.–W., Neeff, R. (1958). Process for the production of acylamino–amino–anthraquinones. Pat. US 2864823 (A); declared 4.08.1955; published 16.12.1958.
- Hayashi, T., Fujino, Y. (1954). Derivatives of Anthraquinone. III. Synthesis of Acylaminoanthraquinones. The Journal of the Society of Chemical Industry, 57 (11), 824–826. doi: 10.1246/nikkashi1898.57.824
- Zvarych, V. I., Stasevych, M. V., Stanko, O. V., Komarovskaya–Porokhnyavets, E. Z., Poroikov, V. V., Rudik, A. V., Lagunin, A. A., Vovk, M. V., Novikov, V. P. (2014). Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino–Acid Derivatives of 2–Chloro–N–(9,10–Dioxo–9,10–Dihydroanthracen–1–yl)acetamide. The Pharmaceutical and Chemical Journal, 48 (9), 584–588. doi: 10.1007/s11094–014–1154–z
- Zvarych, V., Stasevych, M., Lunin, V., Deniz, N. G., Sayil, C., Ozyurek, M., Guclu, K., Vovk, M., Novikov, V. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamates derivatives of 9,10–anthracenedione. Monatshefte für Chemie, 147 (12), 2093–2101. doi: 10.1007/s00706–016–1839–y
- Stasevych, M. V., Zvarych, V. I., Lunin, V. V., Vovk, M. V., Novikov, V. P. (2017). Convenient Synthesis of 1–Hydrazinylanthracene–9,10–diones. Russian Journal of Organic Chemistry, 53 (3), 468–469. doi: 10.1134/S1070428017030277
- Berghot, M. A., Hanna, M. A., Girges, M. M. (1992). Synthesis and biological activity of some heterocyclic systems containing anthraquinone. Die Pharmazie, 47 (5), 340–343.
- Gorelik, M. V., Puchkova, V. V., Khan, I. G. (1976). Sposob polucheniia 4–zameshchennykh 1,2–antrakhinonimidazolinov. Pat. USSR 499260, C07C 49/68; declared 07.12.1973; published 15.01.1976.
- Deinet, J. (1947). A Oxazole compounds of the anthraquinone series. Pat. US 2415937; declared 6.06.1944; published. 18.02.1947.
- Baumann, F., Schwechten, H.–W. (1941). Dye stuffs of the anthraquinone series. Pat. US 2245521 (A); declared 7.03.1940 ; published. 10.06.1941.
- Kunz, M. A., Rosenberg, G. V., Goffarje, E. (1929). Verfahren zur Darstellung von Kuepenfarbstoffen der Anthrachinonreih. Pat. Germany 475687 (C); declared 14.08.1926 ; published 3.05.1929.
- Nawiasky, P., Stein, B., Berthold, E., Zell, R. (1934). Verfahren zur Herstellung von Derivaten des Aminoanthrachinons. Pat. Germany 604279 (C); declared 24.09.1932; published 18.10. 1934.
- Arient, J., Slavik, V. (1969). Anthrachinonfarbstoffe VII. Cyclisierung von 1–Phenylamino–anthrachinonderivaten in der Aluminiumchloridschmelze. Collection of Czechoslovak Chemical Communications, 34 (11), 3576–3587. doi: 10.1135/cccc19693576
- Grelat, M. (1983). Catalytically reductive ring closure for 1–acylamino–3,4–phthaloylacridones. Pat. US 4384119 (A); declared 19.01.1982; published 17.05.1983.
- Bishop, O. M., Perkins, M. A. (1934). Production of indanthrones. Pat. US 1975248 (A); declared 13.05.1930; published 2.10.1934.
- Thomas, O. M., David, F., Whyte, A. (1937). Dyeing by means of sulphuric esters of indanthrones. Pat. US 2091143 (A); declared 10.06.1935; published 24.08.1937.
- Elslager, E. F. (1956). Anthrapyridones. US Pat. 2756234 (A); declared 2.12.1953; published 24.07.1956.
- Baettig, K., Jan, G. (2010). Anthrapyridone dyes and their preparation and use. Pat. US 7828886 (B2); declared 24.09.2009; published 9.11.2010.
- Shankarling, G. S., Sivakumar, K., Dhalla, A. M. (2010). Thermally stable anthrapyridone. Pat. US 7655085 (B2); declared 22.12.2005; published 2.02.2010.
- Fedenok, L. G., Barabanov, I. I., Ivanchikova, I. D. (2001). Two routes of heterocyclization of 2–alkynylanthraquinone–1–diazonium salts. The synthesis of 1H–naphtho[2,3–h]cinnoline–4,7,12–trione. Tetrahedron, 57 (7), 1331–1334. doi: 10.1016/S0040–4020(00)01101–7
- Gregoire, P. J., Mellor, J. M., Merriman, G. D. (1995). Reaction of imines of aminoanthraquinones with formaldehyde and alkenes. Tetrahedron, 51 (21), 6133–6144. doi: 10.1016/0040–4020(95)00270–I
- Gaddam, V. (2010). Synthesis of polycyclic aminoanthraquinone, indole and pyridocarbazole derivatives through inter and intramolecular hetero Diels–Alder reaction. PhD Thesis. India, University of Hyderabad, 322.
- Wieners, F. (1933). A process for the preparation of vat dyes of the anthraquinone. Pat. Germany 590163 (C); declared 5.06.1930; published 27.12.1933.
- Sondhi, S. M., Sharm, V. K., Singhal, N., Verma, R. P., Shukla, R., Raghubir, R., Dubey, M. P. (2000). Synthesis and anti–inflammatory activity evaluation of some acridinyl amino antipyrine, acridinyl amino anthraquinone, acridino thiourea and thiazolino thiourea derivatives. Phosphorus, Sulfur & Silicon and the Related Elements, 156 (1), 21–33. doi: 10.1080/10426500008044991
- Nandi, B. K., Ganapathi, K. (1940). Heterocyclic and Other Derivatives of Sulphanilamide. Current Science, 4, 177.
- Petasis, N. A., Myslinska, M. (2009). Substituted Nitrogen Heterocycles and Synthesis and Uses Thereof. Pat. US 20090247766 (A1); declared 27.03.2009; published 1.10. 2009.
- Gaddam, V. A, Meesala, R., Nagarajan, R. (2007). Rapid Intramolecular Imino Diels–Alder Reaction of Aminoanthraquinones with Citronellal or
- Prenylated Salicylaldehydes: Substituent Effect on Changing the Reaction Pathway from Diels–Alder to Ene–Type Cyclization. Synthesis, 2007 (16), 2503–2512. doi: 10.1055/s–2007–983790
- Gang, W., Xiangkai, F., Jing H., Liu, W., Du, Q. (2010). Synthesis and spectroelectrochemical properties of two new dithienylpyrroles bearing anthraquinone units and their polymer films. Electrochimica Acta, 55 (23), 6933–6940. doi: 10.1016/j.electacta.2010.07.012
- Li, Ch., Tianyi, Z., Zhe, Z., L. Xiujun, Zhao, Y., Zhang, B, Feng, Y. (2012). A New Route to Indazolone via Amidation Reaction of o–Carboxyazobenzene. Organic Letters, 14 (2), 479–481. doi:10.1021/ol203020x
- Zvarych, V. I., Stasevych, M. V., Lunin, V. V., Vovk, M. V., Novikov, V. P. (2016). Synthesis of (1H–pyrrol–1–yl)anthracene–9,10–diones. Chemistry of Heterocyclic Compounds, 52 (6), 421–423. doi: 10.1007/s10593–016–1904–9
- Yavari, I., Alborzi, A. R., Dehghan, S., Nourmohammadian, F., (2005). Synthesis of Dialkyl 4–Ethoxy–2,5–dihydro–1–(9,10–dihydro–9,10–dioxoanthracen– 1–yl)–5–oxo–1H–pyrrole2,3–dicarboxylates. Phosphorus, Sulfur and Silicon and the Related Elements, 180 (2), 625–631. doi: 10.1080/104265090517488
- Slouka, J., Bekarek, V., Lycka, A. (1982). Cyclization reactions of some o–acylphenylhydrazon. Collection of Czechoslovak Chemical Communications, 47 (06), 1746–1756. doi: 10.1135/cccc19821746
- Ebel, F., Randebrock, R., Rupp, W. (1957). Quinazoline–amino–anthraquinone dyestuff. Pat. US 2792397 (A); declared 25.05.1955; published 14.05.1957.
- Dash, B., Dora, E. K., Panda, P. S. (1980). Synthesis of some new 2–aryl–3–hetaryl–4(3H)quinazolones. Journal of the Indian Chemical Society, 57 (8), 835–836.
- Stasevych, M., Zvarych, V., Lunin, V., Vovk, M., Novikov, V. (2017). The new 1,2,3–triazolylantracene–9,10–diones: synthesis and computer bioactivity screening. Journal of Modern Chemistry & Chemical Technology, 11 (1), 1–9. doi: 10.23939/chcht11.01.001
- Stasevych, M. V., Zvarych, V. I., Lunin, V. V., Vovk, M. V., Novikov, V. P. (2016). Visnyk Natsionalnoho universytetu „Lvivska politekhnika”, Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 841, 241–248.
- Singh, I. P., Saxena, A. K., Shanker, K. (1986). Synthesis and anti–inflammatory activity of oxadiazolines thione hydrochlorides. Indian Journal of Chemistry – Section B, 25, 838–843.
- Savel’ev, V. A., Loskutov, V. A. (1989). Cyclization of N1(1–Anthmquinonyl)–N2–phenylthiourea into thiazole derivatives. Chemistry of Heterocyclic compounds, 25 (9), 1066–1070. doi: 10.1007/bf00487313
- Fang–ying, W., Mei–hua, H., Yu–mei, Wu, Xiao–fang T., Yong–qiang, Z., Zhao–jun, J. (2006). Fluoride–selective colorimetric sensor based on thiourea binding site and anthraquinone reporter. Spectrochimica Acta, part A: Molecular and Biomolecular, 65 (3–4), 633–637. doi: 10.1016/j.saa.2005.12.022
- Priewe, H., Hrynyschyn, K. (1953). Verfahren zur Herstellung von N–Carbothionverbindungen der Oxy–carboxy–phenylamine und ihrer Derivate. Pat. Germany 898896 (C); declared 23.02.1950; published 7.12.1953.
- De Sequeira Aguiar, L. C., Viana, G. M., Dos Santos Romualdo, M. V., Costa, M. V., Bonato B. S. (2011). A Simple and Green Procedure for the Synthesis of N–Benzylthioureas. Letters in Organic Chemistry, 8 (8), 540–544. doi: 10.2174/157017811797249281
- Yavari, I., Kowsari, E. (2008). Ionic liquids as green and recyclable solvents for the synthesis of N–substituted N′–aroylthioureas containing 9,10–anthraquinone moiety. Journal of Sulfur Chemistry, 29 (5), 529–537. doi: 10.1080/17415990801911715
- Desai, R. D., Dalal, S. K., Parikh, A. R. (1990). Synthesis of bis[N–substituted–N′–aroylthioureas]–9,10–anthraquinone. Journal Institution of Chemistry (India), 62 (1), 16–18.
- Stasevych, M., Zvarych, V., Musyanovych, R., Novikov, V., Vovk, M. (2014). Synthesis of N–benzoyl–N’–(9,10–dioxo–9,10–dihydroanthracene–1– yl)–thioureas and quantum–chemical analysis of the reaction passing. Chemistry and Chemical Technology, 8 (2), 135–140.
- Zvarych, V., Stasevych, М., Stanko, О., Novikov, V., Vovk, М., Poroikov, V., Solovyov O. (2013). Computer prediction and synthesis of new azoles based on N–benzoyl–N’–(9,10–dioxo–9,10–dihydroanthacen–1–yl)thioureas. Chemine Technologija, 64 (2), 5–13. doi: 10.5755/j01.ct.64.2.6018
- Stasevych, M. V., Zvarych, V. I., Stan’ko, O. V., Vovk, M. V., Novikov, V. P. (2014). Synthesis of 2–(N–benzoylimino)–N–(9,10–dioxo–9,10–dihydroanthracen– 1–yl)thiazoles Chemistry of Heterocyclic Compounds, 49 (12), 1831–1833. doi: 10.1007/s10593–014–1437–z
- Zvarych V. І., Lunin V. V., Stasevych M. V. (2015). Synthesis of New 1,5–substituted tetrazoles based on N–benzoyl–N’–(9,10–dioxo–9,10–dihydroanthracenyl) thioureas. Visnyk Natsionalnoho universytetu „Lvivska politekhnika”, Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 812, 192–196.
- Luond, R. M., McKie, J. H, Douglas, K. T., Dascombe, M. J. et al. (1998). Inhibitors of Glutathione Reductase as Potential Antimalarial Drugs Kinetic Cooperativity and Effect of Dimethyl Sulphoxide on Inhibition Kinetics. Journal of Enzyme Inhibition, 13 (5), 327–345. doi: 10.3109/14756369809021479
- Sheu, S.–Y., Chiang, H.–C. (1997). Inhibition of xanthine oxidase by synthetic cytokinin analogues. Anticancer Research, 17 (5A), 3293–3297.
- Weimer, P. J., Odom, J. M., Cooling, F. B., Anderson, A. G. (1995). Anthraquinones as inhibitors of sulfide production from sulfate–reducing bacteria. Pat. US 5385842 (A); declared. 13.08.1993; published 31.01.1995.
- Tatnall, R. E. (1996). Finely divided anthraquinone formulations as inhibitors of sulfide production from sulfate–reducing bacteria. Pat. US 5500368 (A); declared 21.10.1994; published 9.03. 1996.
- Odom, J. M. (1994). Anthraquinone inhibition of methane production in methanogenic bacteria. Pat. US 1994008738 (A1); declared 20.10.1993; published 28.04.1994.
- Tanaka, T., Metori K., Satoshi, M., Hitoshi, M. (1990). Studies on Collagenase Inhibitors. II. Inhibitory Effects of Anthraquinones on Bacterial Collagenase. Yakugaku Zasshi, 110 (9), 688–92. doi: 10.1248/yakushi1947.110.9_688
- Schmenger, J., Aeby, J., Kujawa, J. (2007). Colorants for keratin fibers. Pat. US1813264 (A1); declared 27.01.2006; published 1.08.2007.
- Lieber, M. A. (1991). Final Report on the Safety Assessment of Disperse Violet. Journal of the American College of Toxicology, 10 (1), 103–111. doi: 10.3109/10915819109078626
- Hong, X. M., Mahaffey, R. L., Stephens, E. B., VanDahm, R. A. (2009). Anthraquinone colorant compositions and methods for producing the same. Pat. US 7632682; declared 8.12.2004; published 15.12.2009.
- Lim, M., Stasaitis, L., Pan, Y.–G. (1996). Methods for dyeing hair with anthraquinone hair dyes having a quaternary ammonium side chain. Pat. 5520707 (A); declared 7.08.1995; published 28.05.1996.
- Haws, L. C., Jackson, B. A., Turnbull, D., Dressier, W. E. (1994). Two approaches for assessing human safety of disperse. Regulatory Toxicology and Pharmacology, 19 (1), 80–96. doi: 10.1006/rtph.1994.1007
- Neefe, C. W. (1986). Fluorescent non–optical corneal color change device. Pat. 4615593 (A); declared 19.08.1985; published 7.10.1986.
- Bunes, L. A. (1980). Orange anthrapyridine monomeric colorants and colorant precursors. Pat. US 4196294 (A); declared 28.04.1978; published 1.04.1980.
- Demeulemeester, J., Chaltin, P., Marchand, A., De Maeyer, M., Debyser, Z., Christ, F. (2014). LEDGINs, non–catalytic site inhibitors of HIV–1 integrase: a patent review (2006–2014). Expert Opinion on Therapeutic Patents, 24 (6), 609–632. doi: 10.1517/13543776.2014.898753
- Schinazi, R. F., Chu, C. K., Babu, J. R., Oswald, B. J., Saalmann, V., Cannon, D. L., Eriksson, B. F. H., Nasr, M. (1990). Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Research, 13 (5), 265–272. doi: 10.1016/0166–3542(90)90071–E
- Onken, D. (1990). Antibiotika: Chemie und Anwendung. Berlin: Akademie – Verlag. 128.
- Ishmael, D. R. (2013). Anti–tumor compounds derived from 1,4,5,8–tetrachloroanthraquinone. Pat. US 8420861 (B2); declared. 16.10.2008; published 16.04.2013.
- Katzhendler, J., Gean, K–F., Bar–Ad, G., Tashma, Z., Ben–Shoshan, R., Ringel, I., Buchrach, U., Ramu, A. (1989). Synthesis of aminoanthraquinone derivatives and their in vitro evaluation as potential anticancer drugs. European Journal of Medicinal Chemistry, 24 (1), 23–30. doi: 10.1016/0223–5234(89)90159–1
- Jiang, J. B., Johnson, M. G. (1994). Bis–(hydroxylakylamino)–anthraquinone inhibitors of protein kinase C. Pat. US 5344841 (A); declared 30.10.1991; published 6.09.1994.
- Lang, S. A., Murdock, K. C. (1981). Metal chelates of 1,4–bis(substituted–amino–5,8–dihydroxy–anthraquinones. Pat. US 4296030 (A); declared 9.04.1980; published 20.10.1981.
- Litvinova, L. A., Lempart G. V., Filippova T. O., Zhuk O. V. (1978). Khimiko–farmatcevticheskii zhurnal, 12 (11), 65–67.
- Miyamoto, H. (1986). In vitro chemosensitivity and radiosensitivity of an adriamycin–resistant subline of human small cell lung cancer cells. Acta Medica Okayama, 40, 75–81.
- Fabio, P. F., Fields, T. L., Lin, Y. (1978). Bisamidines of 2,6–diaminoanthraquinone as antiamebic agents. Journal of Medicinal Chemistry, 21 (3), 273–276. doi: 10.1021/jm00201a007
- Winkelmann, E., Raetner, W. (1979). Chemotherapeutically active anthraquinones. I. Aminoanthraquinones. Arzneim–Forsch, 29 (10), 1504–1509.
- Stringfellow, D. A., Weed, S. D., Underwood, G. E. (1979). Antiviral and Interferon–Inducing Properties of 1,5–Diamino Anthraquinones. Antimicrobial Agents and Chemotherapy, 15 (1), 111–118. doi: 10.1128/AAC.15.1.111
- Grisar, J. M., Sill, A. D., Fleming, R. W. (1976). Bis(aminoalkylsulfamoyl)anthraquinone antiviral agents. Pat. US 3983248 (A); declared 06.08.1971; published 28.09.1976.
- Litvinova, L. A., Lyakhov, S. A., Andronati, S. A., Zhukova, N. A., Yasinskaya, O. G., Galkin, B. N., Filippova, T. O., Golovenko, N. Ya. (1998). Synthesis and pharmacological properties of new aminoacylaminoanthraquinones. Pharmaceutical Chemistry Journal, 32 (12), 637–640. doi: 10.1007/BF02641313
- Kerwar, S. S., Sloboda, A. E., Ridge, S. C. (1986). Method of treating multiple sclerosis. Pat. US 4617319 (A); declared 13.06.1985; published 14.10.1986.
- Murdock, K. C., Durr, F. E., Wang, B. S. Use of 1,4 bis(substituted) anthrachinones for the manufacture of immunosuppresiva. Pat. US 0154117 (A1); declared 14.01.1985; published 11.09.1985.
- Pribytkova, A. N. (1995). Synthesis and biological activity of some nitrogen–containing analogs of emodin. Chemistry of Natural Compounds, 31 (3), 415–416. doi: 10.1007/BF01165219
- Mehta, R. J., Swithenbank, С., Lieder, Z., Bowers–Dairies, M. M., Young, D. H., Lange, B. C. (1990). Microbicidal and plant growth regulating compounds. Pat. US 4975459; declared 13.12.1989; published 4.12.1990.
- Stead, C. V., Burton, S. J., Lowe, C. R. (1989). Anthraquinone derivatives and their use as protein absorbents. Pat. US 4864018 (A); declared 14.07.1986; published 05.09.1989.
- Sondhi, S. M., Sharma, V. K., Singhal, V. K., Verma, R. P., Shukla, R., Raghubir, R., Dubey, M. P. (2000). Antiinflammatory and analgesic activity evaluation of heterocyclic compounds synthesized by the reaction of 4–isothiocyanato–4–methyl–2–pentanone with amines. Phosphorus, Sulfur and Silicon and the Related Elements, 156 (1), 21–33. doi: 10.1080/10426500008044991
- Salnikova, S. Ya. Ilina, T. V., Zhuravlev, N. S., Verdian, A. I. (1990). Khimiko–Farmatcevticheskii zhurnal, 24 (5), 204–406.
- Singh, I. P., Saxena, A. K., Shanker, K. (1986). Newer indolylthiazolidinones as potent antiinflammatory agents. Indian Journal of Chemistry – Section B: Organic Chemistry Including Medicinal Chemistry, 25 B (8), 838–843.
- Drogovoz, S M., Slishkov, V. V., Rankhel, S. E., Bezuglyi, P. A., Shtefan, L. M., Brigita, N. V. (1992). Khimiko–Farmatcevticheskii zhurnal, 4, 43–47.
- Yen, G.–C., Duh, P.–D., Chuang, D.–Y. (2000). Antioxidant activity of anthraquinones and anthrone. Food Chemistry, 70 (4), 437–441. doi: 10.1016/S0308–8146(00)00108–4
- Teijeira, M., Santana, L., Uriarte, E., Jorge, M. L., Seoane, R. (1996). Synthesis and cytostatic activity of some sulfamido–anthraquinones. Farmaco, 51 (6), 447–450.
- Koyama, J. (2006). Anti–infective quinone derivatives of recent patents. Recent Patents on Anti–Infective Drug Discovery, 1 (1), 113–125. doi: 10.2174/157489106775244073
- Javed, T., Shattat, G. F. (2005). A synthesis of potential new antiarrhythmic agents Journal of Heterocyclic Chemistry, 42 (2), 217–220. doi: 10.1002/jhet.5570420206
- Sankaranarayanan, A., Raman, G., Busch, C., Schultz, T., Zimin, P. I., Hoyer, J., Kohler, R., Wulff, H. (2009). Naphtho[1,2–d]thiazol–2–ylamine (SKA–31), a New Activator of KCa2 and KCa3.1 Potassium Channels, Potentiates the Endothelium–Derived Hyperpolarizing Factor Response and Lowers Blood Pressure. Molecular Pharmacology, 75 (2), 281–295. doi: 10.1124/mol.108.051425
- Jin, G., Desheng, L., Shiyin Y., Wu, C. C. N., Liu, J. X., Carson D. A., Cottam, H. B. (2009). Amide derivatives of ethacrynic acid: Synthesis and evaluation as antagonists of Wnt/β–catenin signaling and CLL cell survival. Bioorganic & Medicinal Chemistry Letters, 19 (3), 606–609. doi: 10.1016/j.bmcl.2008.12.067
- Dikov, A., Dimitrova, M., Krieg R., Halbhuber, K. (2004). New fluorescent method for the histochemical detection of dipeptidyl peptidase IV using glycyl–l–prolyl–2–anthraquinonyl hydrazide as substrate. Journal of Cellular & Molecular Biology, 50, 553–558.
- Stasevych, M., Zvarych, V., Lunin, V., Halenova, T., Savchuk, O., Dudchak, O., Vovk, M., Novikov, V. (2015). Novel anthraquinone–based derivatives as potent inhibitors for receptor tyrosine kinases. Indian Journal of Pharmaceutical Sciences, 77 (5), 634–637. doi: 10.4103/0250–474X.169062
- Halenova, T. I., Nikolaeva, I. V., Stasevych, M. V., Zvarych, V. I., Lunin, V. V., Novikov, V. P., Savchuk, O. M. (2017). Platelet aggregation under the influence of some dithiocarbamate derivatives of 9,10–anthracenedione. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8 (1), 1626–1632.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).