The synthetic potential and the biological action of 1(2)-amino-9,10-anthracenediones and their functional derivatives


  • M. V. Stasevych Lviv Polytechnic National University, Ukraine
  • V. I. Zvarych Lviv Polytechnic National University, Ukraine
  • V. V. Lunin Lviv Polytechnic National University, Ukraine
  • V. P. Novikov Lviv Polytechnic National University, Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine



1(2)-amino-9, 10-anthracenediones, structural modification, biological activity


The review has systematized the literature data of the structural modification methods for 1(2)-amino-9,10-anthracenedione derivatives with alkyl, aryl, acyl, sulfur- and nitrogen-containing acyclic and heterocyclic condensed and non-condensing fragments; the results of the experimental studies of the biological activity of this class of compounds have been analyzed. The conditions of alkylation and arylation of the amino group of amino-9,10-anthracenediones are presented. The methods of acylfunctionalization of aminoanthracenediones have been analyzed. The use of bifunctional chloroanhydrides in obtaining various acyclic and heterocyclic derivatives has been shown. The synthetic potential of the dediazonization reaction has been discovered in production of a wide class of derivatives. Much attention has been paid to production of heterocyclic annelated (imidazole, oxazole, thiazole, azine, phenothiazine, pyrazole, phenanthroline, quinoline) and nonannelated (triazene, furane, pyridine, acridine, thiophene, pyrolytic, triazine, quinoxaline, thiazole) derivatives. In addition, the modification of the amino group has been clarified using aryliso(thio)cyanates, and the use of benzoyl isothiocyanates in the synthesis of thiazole, triazole and tetrazole derivatives has been demonstrated. The review shows that compounds of this type have different types of the biological activity. In particular, they are characterized by the antitumor, antiviral, antimicrobial, antifungal, antioxidant, antithrombotic activities.


Download data is not yet available.


  1. Gorelik, M. V. (1983). Khimiia antrakhinonov i ikh proizvodnykh. Moscow: Khimiia, 294.
  2. Fain, V. Ya. (1999). 9,10–antrakhinony i ikh primeneniie. Moscow: Tcentr fotokhimii, 92.
  3. Gouda, M. A., Berghot, M. A., Shoeib, A., Elattar, K. M., Khalil, A. M. (2010). Chemistry of 2–aminoanthraquinones. Turkish Journal of Chemistry, 34, 651–709. doi: 10.3906/kim–0912–333
  4. Vorozhtsov, N. N. (1955). Osnovy sinteza promezhutochnykh produktov i krasitelei. Moscow: GosTehHimIzdat, 840.
  5. Efros, L. S., Gorelik, M. V. (1979). Khimiia i tekhnologiia promezhutochnykh produktov. Leningrad: Khimiia, 544.
  6. Sharma, R. K., Salunkhe, M. M. (1999). Solid–liquid phase transfer catalytic reaction of l–aminoanthraquinone with alkyl halides: A case of N–alkylation. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 38 (2), 210–211.
  7. Niedzialkowski, P., Ossowski, T., Majewski, R., Nowakowska, Z., Schroeder, G. (2011). Thiol–functionalized anthraquinones: mass spectrometry and electrochemical studies. Monatshefte fuer Chemie, 142 (11), 1121–1129. doi: 10.1007/s00706–011–0623–2
  8. Krasnokutskaya, E. A., Semenischeva, N. I., Filimonov, V. D., Knochel, P. (2007). A New, One–Step, Effective Protocol for the Iodination of Aromatic and Heterocyclic Compounds via Aprotic Diazotization of Amines. Synthesis, 2007 (1), 81–84. doi: 10.1055/s–2006–958936
  9. Yavari, I., Kowsari, E. (2007). Ionic liquids as novel and recyclable reaction media for N–alkylation of amino–9,10–anthraquinones by trialkyl phosphites. Tetrahedron Letters, 48 (21), 3753–3756. doi: 10.1016/j.tetlet.2007.03.077
  10. Deinet, J. (1937). 1,3–dihalogen–2–monomethylamino–anthraquinones and process for preparing same. Pat. US 2091235 (A); declared 22.08.1935; published 22.08.1937.
  11. Bien, H.–S., Stawitz, J., Wunderlich, K. (2000). Anthraquinone Dyes and Intermediates. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a02_355
  12. Getautis, V., Dashkyavichene, M., Paulauskaite, I., Stanisauskaite, A. (2005). Study of the Products from Reaction of 1(2)–Aminoanthraquinones with 1–Chloro–2,3–Epoxypropane. Chemistry of Heterocyclic Compounds, 41 (4), 426–436. doi: 10.1007/s10593–005–0165–9
  13. Arai, S., Kato S., Hida, M. B. (1985). Anthraquinone pharmaceutical compounds and uses therefor. Journal of the Chemical Society of Japan, 58, 1458–1463. doi: 10.1246/bcsj.58.1458
  14. Slavik, V., Arient, J. (1975). Substitution of NH hydrogen in nitrogen derivatives of polycyclic hydrocarbons and quinones. Research Institute of Organic Syntheses, Collection of Czechoslovak Chemical Communications, 40 (4), 1193–1198. doi: 10.1135/cccc19751193
  15. Denisov, V. I., Tkachenko, T. V., Grechneva, S. A. (2002). Khimiia i Khimicheskaia Tekhnologiia, 45 (6), 39–42.
  16. Franc, J. V., Koudelkova, V. J. (1979). Thin–layer chromatography of aromatic amines and their derivatives after reactions with 1–fluoro–2,4–dinitrobenzene. Chromatography, 170 (1), 89–97. doi: 10.1016/S0021–9673(00)84241–7
  17. Lown, J. W. (1988). Anthracycline and Anthracendione–based Anticancer Agents. Amsterdam–Oxford–New York–Tokyo: Elsevier Science Publ. B.V., 752.
  18. Reubke, K.–J., Stawitz, J. (1983). Process for the preparation of dianthraquinonylamines. Pat. US 4382034 (A); declared 14.09.1981; published 3.05.1983.
  19. Dixit, A. N., Dhalla, A. M. (2004). Method for preparation of an anthraquinone colorant composition. Pat. US 6861541; declared 01.03. 2005; published 15.01.2004.
  20. Pearson, A. L., Roush, W. J. (1999). Handbook of Reagents for Organic Synthesis: Activiting Agents and Protecting Groups. Chichester: John Wiley and Sons, 9–16.
  21. Greene, T. W., Wuts, P. G. M. (1999). Protyective Groups in Organic Synthesis. New York: Wiley, 150.
  22. Kobayashi, K., Nagato, S., Kawahita, M. (1995). Synthesis of 1–Formyl–1,2–dihydroquinoline Derivatives by a Lewis Acid–Catalyzed Cyclization of o–(1–Hydroxy–2–alkenyl)phenyl Isocyanides. Chemical Letters, 24 (7), 575–576. doi: 10.1246/cl.1995.575
  23. Chen, B. C., Bendorz, M. S., Zhao, R., Sundeen, J. E., Chen, P., Shen Z., Skoumbourdis, A. P., Barrish, J. C. (2000). A new facile method for the synthesis of 1–arylimidazole–5–carboxylates. Tetrahedron Letters, 41 (29), 5453–5456. doi: 10.1016/S0040–4039(00)00910–2
  24. Lei, M., Ma, L., Hu, L., (2010). A convenient one–pot synthesis of formamide derivatives using thiamine hydrochloride as a novel catalyst. Tetrahedron Letters, 51 (32), 4186–4188. doi: 10.1016/j.tetlet.2010.06.005
  25. Hofle, G., Steglish, W., Vorbruggen, H. (1978). 4–Dialkylaminopyridines as Highly Active Acylation Catalysts. Angewandte Chemie International Edition, 17 (8), 569–583. doi: 10.1002/anie.197805691
  26. Saravanon, P., Singh, V. K. (1999). An efficient method for acylation reactions Tetrahedron Letters, 40 (13), 2611–2614. doi: 10.1016/S0040–4039(99)00229–4
  27. Vedejs, E., Diver, S. T. (1993). Tributylphosphine: a remarkable acylation catalyst. Journal of the American Chemical Society, 115 (8), 3358–3359. doi: 10.1021/ja00061a056
  28. Yadav, V. K., Babu, U. G., Mittal, M. (2001). An efficient method for acylation reactions. Tetrahedron, 57, 7047–7051. doi: 10.1016/S0040–4020(01)00677–9
  29. Shallenberg, E. E., Calvin, M. J. (1955). Ethyl Thioltrifluoroacetate as an Acetylating Agent with Particular Reference to Peptide. Journal of the American Chemical Society, 77 (10), 2779–2783. doi: 10.1021/ja01615a032
  30. Staab, N. A., Walther, G., Rohr, W. (1962). Synthese von Carbonsäureanhydriden nach der Imidazolidmethode. Chemische Berichte, 95 (8), 2073– 2075. doi: 10.1002/cber.19620950832
  31. Keumi, T., Shimada, M., Kitajima, H. B. (1990). 2–(Trifluoroacetyloxy)pyridine as a Mild Trifluoroacetylating Reagent of Amines and Alcohols. Chemical Society of Japan, 63 (8), 2252–2256. doi: 10.1246/bcsj.63.2252
  32. Forbus, T. R., Taylor, S. L., Martin, J. C. (1987). Reactions of the readily accessible electrophile, trifluoroacetyl triflate: a very reactive agent for trifluoroacetylations at oxygen, nitrogen, carbon, or halogen centers. Journal of Organic Chemistry, 52 (19), 4156–4159. doi: 10.1021/jo00228a002
  33. Waki, J., Mainhofer, J. (1977). Efficient preparation of N–alpha–formylamino acid tert–butyl esters. Journal of Organic Chemistry, 42 (11), 2019– 2020. doi: 10.1021/jo00431a046
  34. Chen, F. M., Benoiton, N. L. (1979). A general method for formylating sensitive amino acid esters. Synthesis, 1979 (09), 709–710. doi: 10.1055/s–1979–28805
  35. Chandra, S. A. C., Kumar, A. R., Sathaian, G. (2009). Facile N–formylation of amines using Lewis acids as novel catalysts. Tetrahedron Letters, 50 (50), 7099–7101. doi: 10.1016/j.tetlet.2009.10.006
  36. Zhan, J., Gunatilaka, A. A. L. (2008). Facile N–formylation of amines using Lewis acids as novel catalysts. Bioorganic & Medicinal Chemistry, 16 (9), 5085–5089. doi: 10.1016/j.bmc.2008.03.030
  37. Niu, H–T, Su, D. X. (2008). A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Organic and Biomolecular Chemistry, 6 (17), 3038–3040. doi: 10.1039/B808589G
  38. Saeed, A., Javed, I. J. (1987). A new acylation catalyst. Journal of the Chemical Society – Series Chemical Communications, 2, 114–115. doi: 10.1039/C39870000114
  39. Kazankov, M. V., Ginodman, L. G., Mustafina, M. Ya. (1981). Zhurnal organicheskoi i farmatcevticheskoi khimii, 17 (2), 306–313.
  40. Zvarych, V. І., Stasevych, M. V., Lunin, V. V., Novikov, V. P., Vovk, M. V. (2015). N–Acylation of amino–9,10–anthraquinones by system of strong carboxylic acid – ammonium thiocyanate. Zhurnal organichnoi ta farmatsevtichnoi khimii, 13 (2), 35–40.
  41. Genta, G. R. (1969). Anthraquinone dyestuff manufacture. Pat. US 3426047 (A); declared 4.03.1965; published 4.02.1969.
  42. Mukhina, O. A., Kumar B. N. N., Arisco, T. M., Valiulin, R. A., Metzel, G. A., Kutateladze, A. G. (2011). Rapid Photoassisted Access to N,O,S–Polyheterocycles with Benzoazocine and Hydroquinoline Cores: Intramolecular Cycloadditions of Photogenerated Azaxylylenes. Angewandte Chemie, International Edition, 50 (40), 9423–9428. doi: 10.1002/anie.201103597
  43. Barasch, D., Zipori, O., Ringel, I., Ginsburgc, I., Samunid, A., Katzhendler, J. (1999). Novel anthraquinone derivatives with redox–active functional groups capable of producing free radicals by metabolism: are free radicals essential for cytotoxicity? European Journal of Medicinal Chemistry, 34 (7–8), 597–616. doi: 10.1016/S0223–5234(00)80029–X
  44. Collier, D. A., Neidle, S. (1988). Synthesis, molecular modeling, DNA binding, and antitumor properties of some substituted amidoanthraquinones. Journal of Medicinal Chemistry, 31 (4), 847–857. doi: 10.1021/jm00399a028
  45. Koeberle, K. (1934). Production of amino–acylaminoanthraquinones. Pat. US 1966125 (A); declared 3.11.1932; published 10.07.1934.
  46. Schwechten, H.–W., Neeff, R. (1958). Process for the production of acylamino–amino–anthraquinones. Pat. US 2864823 (A); declared 4.08.1955; published 16.12.1958.
  47. Hayashi, T., Fujino, Y. (1954). Derivatives of Anthraquinone. III. Synthesis of Acylaminoanthraquinones. The Journal of the Society of Chemical Industry, 57 (11), 824–826. doi: 10.1246/nikkashi1898.57.824
  48. Zvarych, V. I., Stasevych, M. V., Stanko, O. V., Komarovskaya–Porokhnyavets, E. Z., Poroikov, V. V., Rudik, A. V., Lagunin, A. A., Vovk, M. V., Novikov, V. P. (2014). Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino–Acid Derivatives of 2–Chloro–N–(9,10–Dioxo–9,10–Dihydroanthracen–1–yl)acetamide. The Pharmaceutical and Chemical Journal, 48 (9), 584–588. doi: 10.1007/s11094–014–1154–z
  49. Zvarych, V., Stasevych, M., Lunin, V., Deniz, N. G., Sayil, C., Ozyurek, M., Guclu, K., Vovk, M., Novikov, V. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamates derivatives of 9,10–anthracenedione. Monatshefte für Chemie, 147 (12), 2093–2101. doi: 10.1007/s00706–016–1839–y
  50. Stasevych, M. V., Zvarych, V. I., Lunin, V. V., Vovk, M. V., Novikov, V. P. (2017). Convenient Synthesis of 1–Hydrazinylanthracene–9,10–diones. Russian Journal of Organic Chemistry, 53 (3), 468–469. doi: 10.1134/S1070428017030277
  51. Berghot, M. A., Hanna, M. A., Girges, M. M. (1992). Synthesis and biological activity of some heterocyclic systems containing anthraquinone. Die Pharmazie, 47 (5), 340–343.
  52. Gorelik, M. V., Puchkova, V. V., Khan, I. G. (1976). Sposob polucheniia 4–zameshchennykh 1,2–antrakhinonimidazolinov. Pat. USSR 499260, C07C 49/68; declared 07.12.1973; published 15.01.1976.
  53. Deinet, J. (1947). A Oxazole compounds of the anthraquinone series. Pat. US 2415937; declared 6.06.1944; published. 18.02.1947.
  54. Baumann, F., Schwechten, H.–W. (1941). Dye stuffs of the anthraquinone series. Pat. US 2245521 (A); declared 7.03.1940 ; published. 10.06.1941.
  55. Kunz, M. A., Rosenberg, G. V., Goffarje, E. (1929). Verfahren zur Darstellung von Kuepenfarbstoffen der Anthrachinonreih. Pat. Germany 475687 (C); declared 14.08.1926 ; published 3.05.1929.
  56. Nawiasky, P., Stein, B., Berthold, E., Zell, R. (1934). Verfahren zur Herstellung von Derivaten des Aminoanthrachinons. Pat. Germany 604279 (C); declared 24.09.1932; published 18.10. 1934.
  57. Arient, J., Slavik, V. (1969). Anthrachinonfarbstoffe VII. Cyclisierung von 1–Phenylamino–anthrachinonderivaten in der Aluminiumchloridschmelze. Collection of Czechoslovak Chemical Communications, 34 (11), 3576–3587. doi: 10.1135/cccc19693576
  58. Grelat, M. (1983). Catalytically reductive ring closure for 1–acylamino–3,4–phthaloylacridones. Pat. US 4384119 (A); declared 19.01.1982; published 17.05.1983.
  59. Bishop, O. M., Perkins, M. A. (1934). Production of indanthrones. Pat. US 1975248 (A); declared 13.05.1930; published 2.10.1934.
  60. Thomas, O. M., David, F., Whyte, A. (1937). Dyeing by means of sulphuric esters of indanthrones. Pat. US 2091143 (A); declared 10.06.1935; published 24.08.1937.
  61. Elslager, E. F. (1956). Anthrapyridones. US Pat. 2756234 (A); declared 2.12.1953; published 24.07.1956.
  62. Baettig, K., Jan, G. (2010). Anthrapyridone dyes and their preparation and use. Pat. US 7828886 (B2); declared 24.09.2009; published 9.11.2010.
  63. Shankarling, G. S., Sivakumar, K., Dhalla, A. M. (2010). Thermally stable anthrapyridone. Pat. US 7655085 (B2); declared 22.12.2005; published 2.02.2010.
  64. Fedenok, L. G., Barabanov, I. I., Ivanchikova, I. D. (2001). Two routes of heterocyclization of 2–alkynylanthraquinone–1–diazonium salts. The synthesis of 1H–naphtho[2,3–h]cinnoline–4,7,12–trione. Tetrahedron, 57 (7), 1331–1334. doi: 10.1016/S0040–4020(00)01101–7
  65. Gregoire, P. J., Mellor, J. M., Merriman, G. D. (1995). Reaction of imines of aminoanthraquinones with formaldehyde and alkenes. Tetrahedron, 51 (21), 6133–6144. doi: 10.1016/0040–4020(95)00270–I
  66. Gaddam, V. (2010). Synthesis of polycyclic aminoanthraquinone, indole and pyridocarbazole derivatives through inter and intramolecular hetero Diels–Alder reaction. PhD Thesis. India, University of Hyderabad, 322.
  67. Wieners, F. (1933). A process for the preparation of vat dyes of the anthraquinone. Pat. Germany 590163 (C); declared 5.06.1930; published 27.12.1933.
  68. Sondhi, S. M., Sharm, V. K., Singhal, N., Verma, R. P., Shukla, R., Raghubir, R., Dubey, M. P. (2000). Synthesis and anti–inflammatory activity evaluation of some acridinyl amino antipyrine, acridinyl amino anthraquinone, acridino thiourea and thiazolino thiourea derivatives. Phosphorus, Sulfur & Silicon and the Related Elements, 156 (1), 21–33. doi: 10.1080/10426500008044991
  69. Nandi, B. K., Ganapathi, K. (1940). Heterocyclic and Other Derivatives of Sulphanilamide. Current Science, 4, 177.
  70. Petasis, N. A., Myslinska, M. (2009). Substituted Nitrogen Heterocycles and Synthesis and Uses Thereof. Pat. US 20090247766 (A1); declared 27.03.2009; published 1.10. 2009.
  71. Gaddam, V. A, Meesala, R., Nagarajan, R. (2007). Rapid Intramolecular Imino Diels–Alder Reaction of Aminoanthraquinones with Citronellal or
  72. Prenylated Salicylaldehydes: Substituent Effect on Changing the Reaction Pathway from Diels–Alder to Ene–Type Cyclization. Synthesis, 2007 (16), 2503–2512. doi: 10.1055/s–2007–983790
  73. Gang, W., Xiangkai, F., Jing H., Liu, W., Du, Q. (2010). Synthesis and spectroelectrochemical properties of two new dithienylpyrroles bearing anthraquinone units and their polymer films. Electrochimica Acta, 55 (23), 6933–6940. doi: 10.1016/j.electacta.2010.07.012
  74. Li, Ch., Tianyi, Z., Zhe, Z., L. Xiujun, Zhao, Y., Zhang, B, Feng, Y. (2012). A New Route to Indazolone via Amidation Reaction of o–Carboxyazobenzene. Organic Letters, 14 (2), 479–481. doi:10.1021/ol203020x
  75. Zvarych, V. I., Stasevych, M. V., Lunin, V. V., Vovk, M. V., Novikov, V. P. (2016). Synthesis of (1H–pyrrol–1–yl)anthracene–9,10–diones. Chemistry of Heterocyclic Compounds, 52 (6), 421–423. doi: 10.1007/s10593–016–1904–9
  76. Yavari, I., Alborzi, A. R., Dehghan, S., Nourmohammadian, F., (2005). Synthesis of Dialkyl 4–Ethoxy–2,5–dihydro–1–(9,10–dihydro–9,10–dioxoanthracen– 1–yl)–5–oxo–1H–pyrrole2,3–dicarboxylates. Phosphorus, Sulfur and Silicon and the Related Elements, 180 (2), 625–631. doi: 10.1080/104265090517488
  77. Slouka, J., Bekarek, V., Lycka, A. (1982). Cyclization reactions of some o–acylphenylhydrazon. Collection of Czechoslovak Chemical Communications, 47 (06), 1746–1756. doi: 10.1135/cccc19821746
  78. Ebel, F., Randebrock, R., Rupp, W. (1957). Quinazoline–amino–anthraquinone dyestuff. Pat. US 2792397 (A); declared 25.05.1955; published 14.05.1957.
  79. Dash, B., Dora, E. K., Panda, P. S. (1980). Synthesis of some new 2–aryl–3–hetaryl–4(3H)quinazolones. Journal of the Indian Chemical Society, 57 (8), 835–836.
  80. Stasevych, M., Zvarych, V., Lunin, V., Vovk, M., Novikov, V. (2017). The new 1,2,3–triazolylantracene–9,10–diones: synthesis and computer bioactivity screening. Journal of Modern Chemistry & Chemical Technology, 11 (1), 1–9. doi: 10.23939/chcht11.01.001
  81. Stasevych, M. V., Zvarych, V. I., Lunin, V. V., Vovk, M. V., Novikov, V. P. (2016). Visnyk Natsionalnoho universytetu „Lvivska politekhnika”, Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 841, 241–248.
  82. Singh, I. P., Saxena, A. K., Shanker, K. (1986). Synthesis and anti–inflammatory activity of oxadiazolines thione hydrochlorides. Indian Journal of Chemistry – Section B, 25, 838–843.
  83. Savel’ev, V. A., Loskutov, V. A. (1989). Cyclization of N1(1–Anthmquinonyl)–N2–phenylthiourea into thiazole derivatives. Chemistry of Heterocyclic compounds, 25 (9), 1066–1070. doi: 10.1007/bf00487313
  84. Fang–ying, W., Mei–hua, H., Yu–mei, Wu, Xiao–fang T., Yong–qiang, Z., Zhao–jun, J. (2006). Fluoride–selective colorimetric sensor based on thiourea binding site and anthraquinone reporter. Spectrochimica Acta, part A: Molecular and Biomolecular, 65 (3–4), 633–637. doi: 10.1016/j.saa.2005.12.022
  85. Priewe, H., Hrynyschyn, K. (1953). Verfahren zur Herstellung von N–Carbothionverbindungen der Oxy–carboxy–phenylamine und ihrer Derivate. Pat. Germany 898896 (C); declared 23.02.1950; published 7.12.1953.
  86. De Sequeira Aguiar, L. C., Viana, G. M., Dos Santos Romualdo, M. V., Costa, M. V., Bonato B. S. (2011). A Simple and Green Procedure for the Synthesis of N–Benzylthioureas. Letters in Organic Chemistry, 8 (8), 540–544. doi: 10.2174/157017811797249281
  87. Yavari, I., Kowsari, E. (2008). Ionic liquids as green and recyclable solvents for the synthesis of N–substituted N′–aroylthioureas containing 9,10–anthraquinone moiety. Journal of Sulfur Chemistry, 29 (5), 529–537. doi: 10.1080/17415990801911715
  88. Desai, R. D., Dalal, S. K., Parikh, A. R. (1990). Synthesis of bis[N–substituted–N′–aroylthioureas]–9,10–anthraquinone. Journal Institution of Chemistry (India), 62 (1), 16–18.
  89. Stasevych, M., Zvarych, V., Musyanovych, R., Novikov, V., Vovk, M. (2014). Synthesis of N–benzoyl–N’–(9,10–dioxo–9,10–dihydroanthracene–1– yl)–thioureas and quantum–chemical analysis of the reaction passing. Chemistry and Chemical Technology, 8 (2), 135–140.
  90. Zvarych, V., Stasevych, М., Stanko, О., Novikov, V., Vovk, М., Poroikov, V., Solovyov O. (2013). Computer prediction and synthesis of new azoles based on N–benzoyl–N’–(9,10–dioxo–9,10–dihydroanthacen–1–yl)thioureas. Chemine Technologija, 64 (2), 5–13. doi: 10.5755/j01.ct.64.2.6018
  91. Stasevych, M. V., Zvarych, V. I., Stan’ko, O. V., Vovk, M. V., Novikov, V. P. (2014). Synthesis of 2–(N–benzoylimino)–N–(9,10–dioxo–9,10–dihydroanthracen– 1–yl)thiazoles Chemistry of Heterocyclic Compounds, 49 (12), 1831–1833. doi: 10.1007/s10593–014–1437–z
  92. Zvarych V. І., Lunin V. V., Stasevych M. V. (2015). Synthesis of New 1,5–substituted tetrazoles based on N–benzoyl–N’–(9,10–dioxo–9,10–dihydroanthracenyl) thioureas. Visnyk Natsionalnoho universytetu „Lvivska politekhnika”, Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 812, 192–196.
  93. Luond, R. M., McKie, J. H, Douglas, K. T., Dascombe, M. J. et al. (1998). Inhibitors of Glutathione Reductase as Potential Antimalarial Drugs Kinetic Cooperativity and Effect of Dimethyl Sulphoxide on Inhibition Kinetics. Journal of Enzyme Inhibition, 13 (5), 327–345. doi: 10.3109/14756369809021479
  94. Sheu, S.–Y., Chiang, H.–C. (1997). Inhibition of xanthine oxidase by synthetic cytokinin analogues. Anticancer Research, 17 (5A), 3293–3297.
  95. Weimer, P. J., Odom, J. M., Cooling, F. B., Anderson, A. G. (1995). Anthraquinones as inhibitors of sulfide production from sulfate–reducing bacteria. Pat. US 5385842 (A); declared. 13.08.1993; published 31.01.1995.
  96. Tatnall, R. E. (1996). Finely divided anthraquinone formulations as inhibitors of sulfide production from sulfate–reducing bacteria. Pat. US 5500368 (A); declared 21.10.1994; published 9.03. 1996.
  97. Odom, J. M. (1994). Anthraquinone inhibition of methane production in methanogenic bacteria. Pat. US 1994008738 (A1); declared 20.10.1993; published 28.04.1994.
  98. Tanaka, T., Metori K., Satoshi, M., Hitoshi, M. (1990). Studies on Collagenase Inhibitors. II. Inhibitory Effects of Anthraquinones on Bacterial Collagenase. Yakugaku Zasshi, 110 (9), 688–92. doi: 10.1248/yakushi1947.110.9_688
  99. Schmenger, J., Aeby, J., Kujawa, J. (2007). Colorants for keratin fibers. Pat. US1813264 (A1); declared 27.01.2006; published 1.08.2007.
  100. Lieber, M. A. (1991). Final Report on the Safety Assessment of Disperse Violet. Journal of the American College of Toxicology, 10 (1), 103–111. doi: 10.3109/10915819109078626
  101. Hong, X. M., Mahaffey, R. L., Stephens, E. B., VanDahm, R. A. (2009). Anthraquinone colorant compositions and methods for producing the same. Pat. US 7632682; declared 8.12.2004; published 15.12.2009.
  102. Lim, M., Stasaitis, L., Pan, Y.–G. (1996). Methods for dyeing hair with anthraquinone hair dyes having a quaternary ammonium side chain. Pat. 5520707 (A); declared 7.08.1995; published 28.05.1996.
  103. Haws, L. C., Jackson, B. A., Turnbull, D., Dressier, W. E. (1994). Two approaches for assessing human safety of disperse. Regulatory Toxicology and Pharmacology, 19 (1), 80–96. doi: 10.1006/rtph.1994.1007
  104. Neefe, C. W. (1986). Fluorescent non–optical corneal color change device. Pat. 4615593 (A); declared 19.08.1985; published 7.10.1986.
  105. Bunes, L. A. (1980). Orange anthrapyridine monomeric colorants and colorant precursors. Pat. US 4196294 (A); declared 28.04.1978; published 1.04.1980.
  106. Demeulemeester, J., Chaltin, P., Marchand, A., De Maeyer, M., Debyser, Z., Christ, F. (2014). LEDGINs, non–catalytic site inhibitors of HIV–1 integrase: a patent review (2006–2014). Expert Opinion on Therapeutic Patents, 24 (6), 609–632. doi: 10.1517/13543776.2014.898753
  107. Schinazi, R. F., Chu, C. K., Babu, J. R., Oswald, B. J., Saalmann, V., Cannon, D. L., Eriksson, B. F. H., Nasr, M. (1990). Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Research, 13 (5), 265–272. doi: 10.1016/0166–3542(90)90071–E
  108. Onken, D. (1990). Antibiotika: Chemie und Anwendung. Berlin: Akademie – Verlag. 128.
  109. Ishmael, D. R. (2013). Anti–tumor compounds derived from 1,4,5,8–tetrachloroanthraquinone. Pat. US 8420861 (B2); declared. 16.10.2008; published 16.04.2013.
  110. Katzhendler, J., Gean, K–F., Bar–Ad, G., Tashma, Z., Ben–Shoshan, R., Ringel, I., Buchrach, U., Ramu, A. (1989). Synthesis of aminoanthraquinone derivatives and their in vitro evaluation as potential anticancer drugs. European Journal of Medicinal Chemistry, 24 (1), 23–30. doi: 10.1016/0223–5234(89)90159–1
  111. Jiang, J. B., Johnson, M. G. (1994). Bis–(hydroxylakylamino)–anthraquinone inhibitors of protein kinase C. Pat. US 5344841 (A); declared 30.10.1991; published 6.09.1994.
  112. Lang, S. A., Murdock, K. C. (1981). Metal chelates of 1,4–bis(substituted–amino–5,8–dihydroxy–anthraquinones. Pat. US 4296030 (A); declared 9.04.1980; published 20.10.1981.
  113. Litvinova, L. A., Lempart G. V., Filippova T. O., Zhuk O. V. (1978). Khimiko–farmatcevticheskii zhurnal, 12 (11), 65–67.
  114. Miyamoto, H. (1986). In vitro chemosensitivity and radiosensitivity of an adriamycin–resistant subline of human small cell lung cancer cells. Acta Medica Okayama, 40, 75–81.
  115. Fabio, P. F., Fields, T. L., Lin, Y. (1978). Bisamidines of 2,6–diaminoanthraquinone as antiamebic agents. Journal of Medicinal Chemistry, 21 (3), 273–276. doi: 10.1021/jm00201a007
  116. Winkelmann, E., Raetner, W. (1979). Chemotherapeutically active anthraquinones. I. Aminoanthraquinones. Arzneim–Forsch, 29 (10), 1504–1509.
  117. Stringfellow, D. A., Weed, S. D., Underwood, G. E. (1979). Antiviral and Interferon–Inducing Properties of 1,5–Diamino Anthraquinones. Antimicrobial Agents and Chemotherapy, 15 (1), 111–118. doi: 10.1128/AAC.15.1.111
  118. Grisar, J. M., Sill, A. D., Fleming, R. W. (1976). Bis(aminoalkylsulfamoyl)anthraquinone antiviral agents. Pat. US 3983248 (A); declared 06.08.1971; published 28.09.1976.
  119. Litvinova, L. A., Lyakhov, S. A., Andronati, S. A., Zhukova, N. A., Yasinskaya, O. G., Galkin, B. N., Filippova, T. O., Golovenko, N. Ya. (1998). Synthesis and pharmacological properties of new aminoacylaminoanthraquinones. Pharmaceutical Chemistry Journal, 32 (12), 637–640. doi: 10.1007/BF02641313
  120. Kerwar, S. S., Sloboda, A. E., Ridge, S. C. (1986). Method of treating multiple sclerosis. Pat. US 4617319 (A); declared 13.06.1985; published 14.10.1986.
  121. Murdock, K. C., Durr, F. E., Wang, B. S. Use of 1,4 bis(substituted) anthrachinones for the manufacture of immunosuppresiva. Pat. US 0154117 (A1); declared 14.01.1985; published 11.09.1985.
  122. Pribytkova, A. N. (1995). Synthesis and biological activity of some nitrogen–containing analogs of emodin. Chemistry of Natural Compounds, 31 (3), 415–416. doi: 10.1007/BF01165219
  123. Mehta, R. J., Swithenbank, С., Lieder, Z., Bowers–Dairies, M. M., Young, D. H., Lange, B. C. (1990). Microbicidal and plant growth regulating compounds. Pat. US 4975459; declared 13.12.1989; published 4.12.1990.
  124. Stead, C. V., Burton, S. J., Lowe, C. R. (1989). Anthraquinone derivatives and their use as protein absorbents. Pat. US 4864018 (A); declared 14.07.1986; published 05.09.1989.
  125. Sondhi, S. M., Sharma, V. K., Singhal, V. K., Verma, R. P., Shukla, R., Raghubir, R., Dubey, M. P. (2000). Antiinflammatory and analgesic activity evaluation of heterocyclic compounds synthesized by the reaction of 4–isothiocyanato–4–methyl–2–pentanone with amines. Phosphorus, Sulfur and Silicon and the Related Elements, 156 (1), 21–33. doi: 10.1080/10426500008044991
  126. Salnikova, S. Ya. Ilina, T. V., Zhuravlev, N. S., Verdian, A. I. (1990). Khimiko–Farmatcevticheskii zhurnal, 24 (5), 204–406.
  127. Singh, I. P., Saxena, A. K., Shanker, K. (1986). Newer indolylthiazolidinones as potent antiinflammatory agents. Indian Journal of Chemistry – Section B: Organic Chemistry Including Medicinal Chemistry, 25 B (8), 838–843.
  128. Drogovoz, S M., Slishkov, V. V., Rankhel, S. E., Bezuglyi, P. A., Shtefan, L. M., Brigita, N. V. (1992). Khimiko–Farmatcevticheskii zhurnal, 4, 43–47.
  129. Yen, G.–C., Duh, P.–D., Chuang, D.–Y. (2000). Antioxidant activity of anthraquinones and anthrone. Food Chemistry, 70 (4), 437–441. doi: 10.1016/S0308–8146(00)00108–4
  130. Teijeira, M., Santana, L., Uriarte, E., Jorge, M. L., Seoane, R. (1996). Synthesis and cytostatic activity of some sulfamido–anthraquinones. Farmaco, 51 (6), 447–450.
  131. Koyama, J. (2006). Anti–infective quinone derivatives of recent patents. Recent Patents on Anti–Infective Drug Discovery, 1 (1), 113–125. doi: 10.2174/157489106775244073
  132. Javed, T., Shattat, G. F. (2005). A synthesis of potential new antiarrhythmic agents Journal of Heterocyclic Chemistry, 42 (2), 217–220. doi: 10.1002/jhet.5570420206
  133. Sankaranarayanan, A., Raman, G., Busch, C., Schultz, T., Zimin, P. I., Hoyer, J., Kohler, R., Wulff, H. (2009). Naphtho[1,2–d]thiazol–2–ylamine (SKA–31), a New Activator of KCa2 and KCa3.1 Potassium Channels, Potentiates the Endothelium–Derived Hyperpolarizing Factor Response and Lowers Blood Pressure. Molecular Pharmacology, 75 (2), 281–295. doi: 10.1124/mol.108.051425
  134. Jin, G., Desheng, L., Shiyin Y., Wu, C. C. N., Liu, J. X., Carson D. A., Cottam, H. B. (2009). Amide derivatives of ethacrynic acid: Synthesis and evaluation as antagonists of Wnt/β–catenin signaling and CLL cell survival. Bioorganic & Medicinal Chemistry Letters, 19 (3), 606–609. doi: 10.1016/j.bmcl.2008.12.067
  135. Dikov, A., Dimitrova, M., Krieg R., Halbhuber, K. (2004). New fluorescent method for the histochemical detection of dipeptidyl peptidase IV using glycyl–l–prolyl–2–anthraquinonyl hydrazide as substrate. Journal of Cellular & Molecular Biology, 50, 553–558.
  136. Stasevych, M., Zvarych, V., Lunin, V., Halenova, T., Savchuk, O., Dudchak, O., Vovk, M., Novikov, V. (2015). Novel anthraquinone–based derivatives as potent inhibitors for receptor tyrosine kinases. Indian Journal of Pharmaceutical Sciences, 77 (5), 634–637. doi: 10.4103/0250–474X.169062
  137. Halenova, T. I., Nikolaeva, I. V., Stasevych, M. V., Zvarych, V. I., Lunin, V. V., Novikov, V. P., Savchuk, O. M. (2017). Platelet aggregation under the influence of some dithiocarbamate derivatives of 9,10–anthracenedione. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8 (1), 1626–1632.



How to Cite

Stasevych, M. V.; Zvarych, V. I.; Lunin, V. V.; Novikov, V. P.; Vovk, M. V. The Synthetic Potential and the Biological Action of 1(2)-Amino-9,10-Anthracenediones and Their Functional Derivatives. J. Org. Pharm. Chem. 2017, 15, 3-26.



Original Researches