Synthesis and the activity assessment of adamantylcontaining thiazolium inhibitors of butyrylcholinesterase

Authors

  • A. D. Ocheretniuk Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • O. L. Kobzar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • O. P. Kozachenko Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • V. S. Brovarets Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • A. I. Vovk Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.17.926

Keywords:

butyrylcholinesterase, acetylcholinesterase, adamantan, inhibitor, thiazolium salt, molecular docking

Abstract

Cholinesterase inhibitors can be used for treatment of neuropsychiatric symptoms and functional impairments in neurodegenerative pathologies such as Alzheimer’s and Parkinson’s diseases.
Aim. To synthesize and assess the inhibitory activity of adamantyl-containing 5-substituted N-benzyl and N-phenacylthiazolium salts against butyrylcholinesterase and acetylcholinesterase.
Results and discussion. The synthesis of 3-aroylmethyl- and 3-arylmethyl-5-(2-acyloxyethyl)-4-methylthiazolium salts included preparation of 5-acyloxyethyl thiazole derivatives by the reaction of 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole with the corresponding adamantoyl- or adamantylacetyl chlorides. The derivatives of 5-acyloxyethyl thiazole were quaternized in the reaction with benzyl or phenacyl halides. The studies in vitro have shown that the compounds synthesized inhibit butyrylcholinesterase with IC50 values in the micromolar range. Some of them exhibited selectivity over acetylcholinesterase. The molecular docking was performed for understanding the mechanisms of the enzyme-inhibitor complex formation.
Experimental part. The synthesis of the intermediate and target compounds was carried out by the classical methods. The structures of compounds were proven by NMR 1H-spectroscopy and elemental analysis. The methods of enzymatic kinetics were used for determination of the inhibitory effects of the compounds synthesized. Calculations by molecular docking were carried out using Autodock 4.2 program.
Conclusions. 3-Aroylmethyl- and 3-arylmethyl-5-(2-acyloxyethyl)-4-methylthiazolium salts with adamantylcontaining substituents in position 5 can selectively inhibit butyrylcholinesterase compared to their effect on acetylcholinesterase.

Downloads

Download data is not yet available.

References

  1. Karran, E., Mercken, M., De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of
  2. therapeutics. Nature reviews Drug discovery, 10 (9), 698–712. doi: 10.1038/nrd3505
  3. Francis, P. T., Palmer, A. M., Snape, M., Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of
  4. Neurology, Neurosurgery, and Psychiatry, 66 (2), 137–147. doi: 10.1136/jnnp.67.4.558
  5. Bayles, K. A. (1991). Alzheimer’s disease symptoms: prevalence and order of appearance. Journal of applied gerontology, 10 (4), 419–430. doi:
  6. 1177/073346489101000404
  7. Patocka, J., Kuca, K., Jun, D. (2004). Acetylcholinesterase and butyrylcholinesterase–important enzymes of human body. Acta Medica (Hradec
  8. Kralove), 47 (4), 215–228.
  9. Greig, N. H., Utsuki, T., Yu, Q. et al. (2001). A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Current
  10. medical research and opinion, 17 (3), 159–165. doi: 10.1185/0300799039117057
  11. Cokugras, A. N. (2003). Butyrylcholinesterase: structure and physiological importance. Turkish journal of biochemistry, 28 (2), 54–61.
  12. Colovic, M. B., Krstic, D. Z., Lazarevic–Pasti, T. D. et al. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Current neuropharmacology,
  13. (3), 315–335. doi: 10.2174/1570159X11311030006
  14. Aarsland, D., Mosimann, U. P., McKeith, I. G. (2004). Role of cholinesterase inhibitors in Parkinson’s disease and dementia with Lewy bodies.
  15. Journal of geriatric psychiatry and neurology, 17 (3), 164–171. doi: 10.1177/0891988704267463
  16. Singh, J., Kour, K., Jayaram, M. B. (2012). Acetylcholinesterase inhibitors for schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry, 83 (10).
  17. doi: 10.1002/14651858.CD007967.pub2
  18. Yu, Q. S., Holloway, H. W., Utsuki, T. et al. (1999). Synthesis of novel phenserine–based–selective inhibitors of butyrylcholinesterase for Alzheimer’s
  19. disease. Journal of medicinal chemistry, 42 (10), 1855–1861. doi: 10.1021/jm980459s
  20. Carolan, C. G., Dillon, G. P., Gaynor, J. M. et al. (2010). Isosorbide–2–carbamate esters: potent and selective butyrylcholinesterase inhibitors. Journal
  21. of medicinal chemistry, 53 (3), 1190–1199. doi: 10.1021/jm800564y
  22. Simeon–Rudolf, V., Sinko, G., Stuglin, A., Reiner, E. (2001). Inhibition of human blood acetylcholinesterase and butyrylcholinesterase by ethopropazine.
  23. Croatica Chemica Acta, 74 (1), 173–182.
  24. Weinstock, M. (1999). Selectivity of Cholinesterase Inhibition. CNS Drugs, 12 (4), 307–323. doi: 10.2165/00023210–199912040–00005
  25. Alspach, J. D., Ingraham, L. L. (1977). Inhibition of acetylcholinesterase by thiamine. A structure–function study. Journal of medicinal chemistry,
  26. (1), 161–164. doi: 10.1021/jm00211a035
  27. Antoniadou–Vyza, E., Tsitsa, P., Hytiroglou, E., Tsantili–Kakoulidou, A. (1996). New adamantan–2–ol and adamantan–1–methanol derivatives as
  28. potent antibacterials. Synthesis, antibacterial activity and lipophilicity studies. European journal of medicinal chemistry, 31 (2), 105–110.
  29. doi: 10.1016/0223–5234(96)80443–0
  30. Kolocouris, N., Kolocouris, A., Foscolos, G. B., Fytas, G., Neyts, J., Padalko, E., De Clercq, E. (1996). Synthesis and Antiviral Activity Evaluation of
  31. Some New Aminoadamantane Derivatives. 2. Journal of Medicinal Chemistry, 39 (17), 3307–3318. doi: 10.1021/jm950891z
  32. Cai, Z. Q., Liu, J., Shao, M. X. et al. (2014). A cup–like structure: synthesis, crystal structure and anti–cancer activity of 2–(2–(4, 5–diphenyl–1H–
  33. imidazol–1–yl) acetamido) ethyl adamantane–1–carboxylate. Journal of the Chemical Society of Pakistan, 36 (4), 717–722. doi: 101422013067
  34. Wolf, E., Seppi, K., Katzenschlager, R. et al. (2010). Long–term antidyskinetic efficacy of amantadine in Parkinson’s disease. Movement Disorders,
  35. (10), 1357–1363. doi: 10.1002/mds.23034
  36. Gerald, V., Evidente, H., Adler, C. H., Caviness, J. N., Gwinn–Hardy, K. (1999). A Pilot Study on the Motor Effects of Rimantadine in Parkinson’s
  37. Disease. Clinical Neuropharmacology, 22 (1), 30–32. doi: 10.1097/00002826–199901000–00006
  38. Danysz, W., Parsons, C. G., Möbius, H.–Jö., Stöffler, A., Quack, Gü. (2000). Neuroprotective and symptomatological action of memantine relevant
  39. for alzheimer’s disease – a unified glutamatergic hypothesis on the mechanism of action. Neurotoxicity Research, 2 (2–3), 85–97. doi: 10.1007/
  40. bf03033787
  41. Bores, G. M., Huger, F. P., Petko, W. et al. (1996). Pharmacological evaluation of novel Alzheimer’s disease therapeutics: acetylcholinesterase
  42. inhibitors related to galanthamine. Journal of Pharmacology and Experimental Therapeutics, 277 (2), 728–738.
  43. Šekutor, M., Mlinarić–Majerski, K., Hrenar, T., Tomić, S., Primožič, I. (2012). Adamantane–substituted guanylhydrazones: Novel inhibitors of butyrylcholinesterase.
  44. Bioorganic Chemistry, 41–42, 28–34. doi: 10.1016/j.bioorg.2012.01.004
  45. Buchman, E. R., Williams, R. R., Keresztesy, J. C. (1935). Studies of Crystalline Vitamin B1. 1 X. Sulfite Cleavage. III. Chemistry of the Basic Product.
  46. Journal of the American Chemical Society, 57 (10), 1849–1851. doi: 10.1021/ja01313a026
  47. Sano, T. (1944). Vergleich der Wirksamkeit der verschiedenen Aneurinester von organischen Sauren. Bulletin of the Chemical Society of Japan,
  48. (11), 185–205. doi: 10.1246/bcsj.19.185
  49. Matsukawa, T., Yurugi, S. (1951). Studies on Vitamin B1 and its Related Compounds. XIII. Yakugaku zasshi, 71 (2), 69–72. doi: 10.1248/yakushi1947.71.2_69
  50. Ellman, G. L., Courtney, K. D., Andres, V., Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity.
  51. Biochemical Pharmacology, 7 (2), 88–95. doi: 10.1016/0006–2952(61)90145–9
  52. Nachon, F., Carletti, E., Ronco, C. et al. (2013). Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of
  53. specificity for anti–Alzheimer’s drugs targeting acetyl–and butyryl–cholinesterase. Biochemical Journal, 453 (3), 393–399. doi: 10.1042/BJ20130013
  54. Eyer, P., Worek, F., Kiderlen, D. et al. (2003). Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical biochemistry,
  55. (2), 224–227. doi: 10.1016/S0003–2697(02)00506–7

Downloads

Published

2017-12-14

How to Cite

(1)
Ocheretniuk, A. D.; Kobzar, O. L.; Kozachenko, O. P.; Brovarets, V. S.; Vovk, A. I. Synthesis and the Activity Assessment of Adamantylcontaining Thiazolium Inhibitors of Butyrylcholinesterase. J. Org. Pharm. Chem. 2017, 15, 48-55.

Issue

Section

Original Researches