The proton-initiated cyclization of N-alkylamides of styrylacetic acids. The synthesis of 5-arylpirrolidine-2-ones
DOI:
https://doi.org/10.24959/ophcj.18.933Keywords:
polyphosphoric acid (PPA), styrylacetic acid amides, proton-initiated cyclization, 5-arylpyrrolidine- 2-one, lactams, lactonesAbstract
Aim. To study the effect of the structural parameters of styrylacetic acid amides on the course of the reaction of the electrophilic intramolecular cyclization under the action of polyphosphoric acid and search the rational approaches to obtain N-unsubstituted 5-arylpyrrolidine-2-ones.
Results and discussion. The literature sources related to the main methods of synthesis, as well as the biological activity of 5-arylpyrrolidine-2-ones, have been analyzed and systematized. The regiochemistry of the cyclization of N-unsubstituted and N-alkyl amides of styrylacetic acids has been studied using polyphosphoric acid (PPA).
Experimental part. It has been found that N-unsubstituted styrylacetic acid amides when heating at 100 °C in PPA are cyclized to 5-arylpyrrolidine-2-ones with the yields of 44-58 %. For N-tert-butylamides with donor substituents in the styrenic moiety of the molecule the cyclization under similar conditions is accompanied with elimination of the N-alkyl fragment resulting in N-unsubstituted 5-arylpyrrolidine-2-ones with the yields of 50-95 %. Lactamization of N-benzylamide and N-isopropylamides under the action of PPA proceeds with formation of 1-alkyl-5-arylpyrrolidine-2-ones.
Conclusions. It has been found that the proton-initiated cyclization of N-unsubstituted and N-tert-butylamides of styrylacetic acid with donor substituents in the styrene fragment in polyphosphoric acid when heating at 100 °C is a preparative convenient method for the synthesis of 1-unsubstituted 5-arylpyrrolidine-2-ones. A similar reaction of N-benzyl (isopropyl) amides leads to the preferential formation of 1-alkyl-5-arylpyrrolidine-2-ones.
Downloads
References
- Pelletier, S. W. (1990). In the Alkaloids: Chemical and Biological Perspectives. Pergamon Press, 1.
- Dewick, P. M. (2009). Alkaloids. Medicinal Natural Products: A Biosynthetic Approach, 6, 311–420. doi: 10.1002/9780470742761.ch6
- Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H., Sasaki, Y. (1991). Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. The Journal of Antibiotics, 44 (1), 113–116. doi: 10.7164/antibiotics.44.113
- Guntern, A., Ioset, J.–R., Queiroz, E. F., Sándor, P., Foggin, C. M., Hostettmann, K. (2003). Heliotropamide, a Novel Oxopyrrolidine–3–carboxamide fromHeliotropiumovalifolium. Journal of Natural Products, 66 (12), 1550–1553. doi: 10.1021/np0302495
- Li, J., Liu, S., Niu, S., Zhuang, W., Che, Y. (2009). Pyrrolidinones from the Ascomycete FungusAlbonectria rigidiuscula. Journal of Natural Products, 72 (12), 2184–2187. doi: 10.1021/np900619z
- Decker, M., Arneric, S. (1999). Nicotinic acetylcholine receptor–targeted Compounds: A Summary of the development pipeline and therapeutic potential. Neuronal nicotinic receptors: pharmacology and therapeutic opportunities, 395.
- Holladay, M. W., Dart, M. J., Lynch, J. K. (1997). Neuronal Nicotinic Acetylcholine Receptors as Targets for Drug Discovery. Journal of Medicinal Chemistry, 40 (26), 4169–4194. doi: 10.1021/jm970377o
- Kazmierski, W. M., Andrews, W., Furfine, E., Spaltenstein, A., Wright, L. (2004). Discovery of potent pyrrolidone–based HIV–1 protease inhibitors with enhanced drug–like properties. Bioorganic & Medicinal Chemistry Letters, 14 (22), 5689–5692. doi: 10.1016/j.bmcl.2004.08.039
- Sherrill, R. G., Andrews, C. W., Bock, W. J., Davis–Ward, R. G., Furfine, E. S., Hazen, R. J., Wright, L. L. (2005). Optimization of pyrrolidinone based
- HIV protease inhibitors. Bioorganic & Medicinal Chemistry Letters, 15 (1), 81–84. doi: 10.1016/j.bmcl.2004.10.029
- Enz, A., Feuerbach, D., Frederiksen, M. U., Gentsch, C., Hurth, K., Müller, W., Roy, B. L. (2009). Gamma–lactams—A novel scaffold for highly potent and selective α7 nicotinic acetylcholine receptor agonists. Bioorganic & Medicinal Chemistry Letters, 19 (5), 1287–1291. doi: 10.1016/j.bmcl.2009.01.073
- Bocchi, V., Gardini, G. P., Pinza M. (1971). Synthesis and activity of substituted 5–aryl–2–pyrrolidinones (DL). Farmaco, 26, 429–434.
- Avetisian, S. A., Kocharov, S. L., Azarian, L. V., Dzhagatcpanian, I. A., Meliken, G. G. (1998). Khimiko–farmatcevticheskii zhurnal, 32 (2), 3–6.
- Kiseleva, I. I., Zobacheva, M. M., Perekalin, V. V. (1974). Zhurnal organicheskoi khimii, 10, 2224–2225.
- Struble, J., Linz, R. (1972). Neue Derivate des 2–Pyrrolidinons. Pat. DE 2136571; declared 22.07.1971; published 27.01.1972.
- Kozlowski, J. A., Yu, W., Wong, M. K. C. (2010). Compounds for the treatment of inflammatory disorders. Pat. WO 2010054279 A1; declared 18.12.2008; published 30.03.2010.
- Yan, L., Hale, J. J., Lynch, C. L., Budhu, R., Gentry, A., Mills, S. G., Mandala, S. M. (2004). Design and synthesis of conformationally constrained 3–(N–alkylamino)propylphosphonic acids as potent agonists of sphingosine–1–phosphate (S1P) receptors. Bioorganic & Medicinal Chemistry Letters, 14 (19), 4861–4866. doi: 10.1016/j.bmcl.2004.07.049
- Yan, L., Budhu, R., Huo, P., Lynch, C. L., Hale, J. J., Mills, S. G., Mandala, S. M. (2006). 2–Aryl(pyrrolidin–4–yl)acetic acids are potent agonists of sphingosine–1–phosphate (S1P) receptors. Bioorganic & Medicinal Chemistry Letters, 16 (13), 3564–3568. doi: 10.1016/j.bmcl.2006.03.090
- Newhouse, B., Allen, S., Fauber, B., Anderson, A. S., Eary, C. T., Hansen, J. D., Burgess, L. E. (2004). Racemic and chiral lactams as potent, selective and functionally active CCR4 antagonists. Bioorganic & Medicinal Chemistry Letters, 14 (22), 5537–5542. doi: 10.1016/j.bmcl.2004.09.001
- Xu, J., Lin, S., Myers, R. W., Addona, G., Berger, J. P., Campbell, B., Parmee, E. R. (2017). Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorganic & Medicinal Chemistry Letters, 27 (9), 2069–2073. doi: 10.1016/j.bmcl.2016.10.085
- Shultz, M., Chen, H.–T., Cho, Y. S., Jiang, L., Fan, J., Liu, G., Majumdar, D., Li, J. (2009). Hydroxamate–based inhibitor of deacetylases. Pat. WO 2009118305 A1; declared 24.03.2009; published 01.10.2009.
- Guo, Z., Orth, P., Wong, S.–C., Lavey, B. J., Shih, N.–Y., Niu, X., Kozlowski, J. A. (2009). Discovery of novel spirocyclopropyl hydroxamate and carboxylate compounds as TACE inhibitors. Bioorganic & Medicinal Chemistry Letters, 19 (1), 54–57. doi: 10.1016/j.bmcl.2008.11.034
- Nilsson, B. M., Vargas, H. M., Ringdahl, B., & Hacksell, U. (1992). Phenyl–substituted analogs of oxotremorine as muscarinic antagonists. Journal of Medicinal Chemistry, 35 (2), 285–294. doi: 10.1021/jm00080a013
- Rosenmund, K. W., Engels, P. (1951). Über die Darstellung von in 5–Stellung phenylierten Butyrolactamen. Archiv Der Pharmazie, 284 (5–6), 209–216. doi: 10.1002/ardp.19512840503
- Reppe, W., Mitarbeitern. (1955). Äthinylierung. Justus Liebigs Annalen Der Chemie, 596 (1), 1–4. doi: 10.1002/jlac.19555960102
- Shono, T., Kise, N., Kunimi, N., Nomura, R. (1991). Electroreductive Coupling of Aromatic Imines with Electrophiles in the Presence of Chlorotrimethylsilane. Chemistry Letters, 20 (12), 2191–2194. doi: 10.1246/cl.1991.2191
- Zhou, Y.–Y., Wang, L.–J., Li, J., Sun, X.–L., Tang, Y. (2012). Side–Arm–Promoted Highly Enantioselective Ring–Opening Reactions and Kinetic Resolution of Donor–Acceptor Cyclopropanes with Amines. Journal of the American Chemical Society, 134 (22), 9066–9069. doi: 10.1021/ja302691r
- Rajender Reddy, L., Prasad, K., Prashad, M. (2012). A Protocol for an Asymmetric Synthesis of γ–Amino Acids. The Journal of Organic Chemistry, 77 (14), 6296–6301. doi: 10.1021/jo301177
- Guijarro, D., Pablo, Ó., Yus, M. (2013). Synthesis of γ–, δ–, and ε–Lactams by Asymmetric Transfer Hydrogenation of N–(tert–Butylsulfinyl)iminoesters. The Journal of Organic Chemistry, 78 (8), 3647–3654. doi: 10.1021/jo400164y
- Emmett, M. R., Grover, H. K., Kerr, M. A. (2012). Tandem Ring–Opening Decarboxylation of Cyclopropane Hemimalonates with Sodium Azide: A Short Route to γ–Aminobutyric Acid Esters. The Journal of Organic Chemistry, 77 (15), 6634–6637. doi: 10.1021/jo3010606
- Benati, L., Leardini, R., Minozzi, M., Nanni, D., Spagnolo, P., Strazzari, S., Zanardi, G. (2002). Intramolecular Cyclization of Acyl Radicals onto the Azido Group: A New Radical Approach to Cyclized Lactams†. Organic Letters, 4 (18), 3079–3081. doi: 10.1021/ol026366t
- Ivanov, K. L., Villemson, E. V., Budynina, E. M., Ivanova, O. A., Trushkov, I. V., Melnikov, M. Y. (2015). Ring Opening of Donor–Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N–Heterocycles. Chemistry – A European Journal, 21 (13), 4975–4987. doi: 10.1002/chem.201405551
- Bertozzi, S., Salvadori, P. (1996). Synthesis of 3–Phenyl and 5–Phenyl–2–pyrrolidinone via Rhodium Catalysed Carbonylation of Allylamines. Synthetic Communications, 26 (16), 2959–2965. doi: 10.1080/00397919608004599
- Armanino, N., Carreira, E. M. (2013). Ruthenium–Catalyzed Intramolecular Hydrocarbamoylation of Allylic Formamides: Convenient Access to Chiral Pyrrolidones. Journal of the American Chemical Society, 135 (18), 6814–6817. doi: 10.1021/ja4026787
- Shu, C., Liu, M.–Q., Wang, S.–S., Li, L., Ye, L.–W. (2013). Gold–Catalyzed Oxidative Cyclization of Chiral Homopropargyl Amides: Synthesis of Enantioenriched γ–Lactams. The Journal of Organic Chemistry, 78 (7), 3292–3299. doi: 10.1021/jo400127x
- Miller, R. D., Goelitz, P. (1981). An efficient and general synthesis of 5–substituted pyrrolidinones. The Journal of Organic Chemistry, 46 (8), 1616–1618. doi: 10.1021/jo00321a017
- Das, B. G., Nallagonda, R., Dey, D., & Ghorai, P. (2015). Synthesis of Air– and Moisture–Stable, Storable Chiral Oxorhenium Complexes and Their Application as Catalysts for the Enantioselective Imine Reduction. Chemistry – A European Journal, 21 (36), 12601–12605. doi: 10.1002/chem.201501914
- Rajender Reddy, L., Prasad, K., Prashad, M. (2012). A Protocol for an Asymmetric Synthesis of γ–Amino Acids. The Journal of Organic Chemistry, 77 (14), 6296–6301. doi: 10.1021/jo301177f
- Shono, T., Kise, N., Kunimi, N., Nomura, R. (1991). Electroreductive Coupling of Aromatic Imines with Electrophiles in the Presence of Chlorotrimethylsilane. Chemistry Letters, 20 (12), 2191–2194. doi: 10.1246/cl.1991.2191
- Kise, N., Hamada, Y., Sakurai, T. (2017). Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β–unsaturated esters: Synthesis of 5–aryl substituted γ–butyrolactones and lactams. Tetrahedron, 73 (8), 1143–1156. doi: 10.1016/j.tet.2017.01.013
- Cheemala, M. N., Knochel, P. (2007). New P,N–Ferrocenyl Ligands for the Asymmetric Ir–Catalyzed Hydrogenation of Imines. Organic Letters, 9 (16), 3089–3092. doi: 10.1021/ol071168t
- Krongauz, E. S., Rusanov, A. L., Renard, T. L. (1970). Uspekhi khimii, 39 (9), 1591–1630.
- Wittekind, R. R., Weissman, C. (1972). Synthesis of the 1,8–diazaspiro[4.5] decane system. Journal of Heterocyclic Chemistry, 9 (1), 111–113. doi: 10.1002/jhet.5570090118
- Hill, R. (1957). Notes – Synthesis of Spirolactams from Nitrocycloalkanes. The Journal of Organic Chemistry, 22 (7), 830–832. doi: 10.1021/jo01358a606
- Vaskevich, R. I., Vaskevich, A. I., Daniliuk, I. Yu., Vovk, M. V. (2013). Zhurnal organicheskoi khimii, 49 (8), 1175–1181.
- Imada, Y., Shibata, O., Murahashi, S.–I. (1993). Aza– and oxacarbonylations of allyl phosphates catalyzed by rhodium carbonyl cluster. Selective synthesis of β, γ–unsaturated amides, esters, and acids. Journal of Organometallic Chemistry, 451 (1–2), 183–194. doi: 10.1016/0022–328x(93)83025–q
- Yi, P., Zhuangyu, Z., Hongwen, H. (1995). Vinylation of Benzylic Quaternary Ammonium Salts Catalyzed by Palladium. Synthesis, 1995 (03), 245–247. doi: 10.1055/s–1995–3911
- Bernardim, B., Burtoloso, A. C. B. (2014). A two–step synthesis of the bioprotective agent JP4–039 from N–Boc–l–leucinal. Tetrahedron, 70 (20),
- –3296. doi: 10.1016/j.tet.2013.10.059
- Qiu, G., Mamboury, M., Wang, Q., Zhu, J. (2016). Ketenimines from Isocyanides and Allyl Carbonates: Palladium–Catalyzed Synthesis of β,γ–Unsaturated Amides and Tetrazoles. Angewandte Chemie International Edition, 55 (49), 15377–15381. doi: 10.1002/anie.201609034
- Rigo, B., Fasseur, D., Cherepy, N., Couturier, D. (1989). Decarboxylation of pyroglutamic acids with P2O5/CH3SO3H : A general synthesis of 5–aryl–2–pyrrolidinones. Tetrahedron Letters, 30 (50), 7057–7060. doi: 10.1016/s0040–4039(01)93422–7
- Yang, Y.–F., Li, L.–H., He, Y.–T., Luo, J.–Y., Liang, Y.–M. (2014). Gold(I)–catalyzed rearrangement of alkynylaziridine indoles for the synthesis of spiro–tetrahydro–β–carbolines. Tetrahedron, 70 (3), 702–707. doi: 10.1016/j.tet.2013.11.084
- Machrouhi, F., Namy, J.–L. (1998). A new coupling reaction between β–lactones and electrophiles mediated by a system. Tetrahedron, 54 (37), 11111–11122. doi: 10.1016/s0040–4020(98)00651–6
- Su, Y., Tu, Y.–Q., Gu, P. (2014). Preparation of Enantioenriched γ–Substituted Lactones via Asymmetric Transfer Hydrogenation of β–Azidocyclopropane Carboxylates Using the Ru–TsDPEN Complex. Organic Letters, 16 (16), 4204–4207. doi: 10.1021/ol501895k
- Rodrigo, S. K., Guan, H. (2012). Quick Installation of a 1,4–Difunctionality via Regioselective Nickel–Catalyzed Reductive Coupling of Ynoates and Aldehydes. The Journal of Organic Chemistry, 77 (18), 8303–8309. doi: 10.1021/jo301790q
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).