The proton-initiated cyclization of N-alkylamides of styrylacetic acids. The synthesis of 5-arylpirrolidine-2-ones

Authors

  • I. Yu. Danyliuk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • R. I. Vas’kevich Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • A. I. Vas’kevich Institute of Organic Chemistry of the NAS of Ukraine, National Technical University of Ukraine "KPI", Ukraine
  • O. O. Lukianov National Technical University of Ukraine "KPI", Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.933

Keywords:

polyphosphoric acid (PPA), styrylacetic acid amides, proton-initiated cyclization, 5-arylpyrrolidine- 2-one, lactams, lactones

Abstract

Aim. To study the effect of the structural parameters of styrylacetic acid amides on the course of the reaction of the electrophilic intramolecular cyclization under the action of polyphosphoric acid and search the rational approaches to obtain N-unsubstituted 5-arylpyrrolidine-2-ones.
Results and discussion. The literature sources related to the main methods of synthesis, as well as the biological activity of 5-arylpyrrolidine-2-ones, have been analyzed and systematized. The regiochemistry of the cyclization of N-unsubstituted and N-alkyl amides of styrylacetic acids has been studied using polyphosphoric acid (PPA).
Experimental part. It has been found that N-unsubstituted styrylacetic acid amides when heating at 100 °C in PPA are cyclized to 5-arylpyrrolidine-2-ones with the yields of 44-58 %. For N-tert-butylamides with donor substituents in the styrenic moiety of the molecule the cyclization under similar conditions is accompanied with elimination of the N-alkyl fragment resulting in N-unsubstituted 5-arylpyrrolidine-2-ones with the yields of 50-95 %. Lactamization of N-benzylamide and N-isopropylamides under the action of PPA proceeds with formation of 1-alkyl-5-arylpyrrolidine-2-ones.
Conclusions. It has been found that the proton-initiated cyclization of N-unsubstituted and N-tert-butylamides of styrylacetic acid with donor substituents in the styrene fragment in polyphosphoric acid when heating at 100 °C is a preparative convenient method for the synthesis of 1-unsubstituted 5-arylpyrrolidine-2-ones. A similar reaction of N-benzyl (isopropyl) amides leads to the preferential formation of 1-alkyl-5-arylpyrrolidine-2-ones.

Downloads

Download data is not yet available.

References

  1. Pelletier, S. W. (1990). In the Alkaloids: Chemical and Biological Perspectives. Pergamon Press, 1.
  2. Dewick, P. M. (2009). Alkaloids. Medicinal Natural Products: A Biosynthetic Approach, 6, 311–420. doi: 10.1002/9780470742761.ch6
  3. Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H., Sasaki, Y. (1991). Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. The Journal of Antibiotics, 44 (1), 113–116. doi: 10.7164/antibiotics.44.113
  4. Guntern, A., Ioset, J.–R., Queiroz, E. F., Sándor, P., Foggin, C. M., Hostettmann, K. (2003). Heliotropamide, a Novel Oxopyrrolidine–3–carboxamide fromHeliotropiumovalifolium. Journal of Natural Products, 66 (12), 1550–1553. doi: 10.1021/np0302495
  5. Li, J., Liu, S., Niu, S., Zhuang, W., Che, Y. (2009). Pyrrolidinones from the Ascomycete FungusAlbonectria rigidiuscula. Journal of Natural Products, 72 (12), 2184–2187. doi: 10.1021/np900619z
  6. Decker, M., Arneric, S. (1999). Nicotinic acetylcholine receptor–targeted Compounds: A Summary of the development pipeline and therapeutic potential. Neuronal nicotinic receptors: pharmacology and therapeutic opportunities, 395.
  7. Holladay, M. W., Dart, M. J., Lynch, J. K. (1997). Neuronal Nicotinic Acetylcholine Receptors as Targets for Drug Discovery. Journal of Medicinal Chemistry, 40 (26), 4169–4194. doi: 10.1021/jm970377o
  8. Kazmierski, W. M., Andrews, W., Furfine, E., Spaltenstein, A., Wright, L. (2004). Discovery of potent pyrrolidone–based HIV–1 protease inhibitors with enhanced drug–like properties. Bioorganic & Medicinal Chemistry Letters, 14 (22), 5689–5692. doi: 10.1016/j.bmcl.2004.08.039
  9. Sherrill, R. G., Andrews, C. W., Bock, W. J., Davis–Ward, R. G., Furfine, E. S., Hazen, R. J., Wright, L. L. (2005). Optimization of pyrrolidinone based
  10. HIV protease inhibitors. Bioorganic & Medicinal Chemistry Letters, 15 (1), 81–84. doi: 10.1016/j.bmcl.2004.10.029
  11. Enz, A., Feuerbach, D., Frederiksen, M. U., Gentsch, C., Hurth, K., Müller, W., Roy, B. L. (2009). Gamma–lactams—A novel scaffold for highly potent and selective α7 nicotinic acetylcholine receptor agonists. Bioorganic & Medicinal Chemistry Letters, 19 (5), 1287–1291. doi: 10.1016/j.bmcl.2009.01.073
  12. Bocchi, V., Gardini, G. P., Pinza M. (1971). Synthesis and activity of substituted 5–aryl–2–pyrrolidinones (DL). Farmaco, 26, 429–434.
  13. Avetisian, S. A., Kocharov, S. L., Azarian, L. V., Dzhagatcpanian, I. A., Meliken, G. G. (1998). Khimiko–farmatcevticheskii zhurnal, 32 (2), 3–6.
  14. Kiseleva, I. I., Zobacheva, M. M., Perekalin, V. V. (1974). Zhurnal organicheskoi khimii, 10, 2224–2225.
  15. Struble, J., Linz, R. (1972). Neue Derivate des 2–Pyrrolidinons. Pat. DE 2136571; declared 22.07.1971; published 27.01.1972.
  16. Kozlowski, J. A., Yu, W., Wong, M. K. C. (2010). Compounds for the treatment of inflammatory disorders. Pat. WO 2010054279 A1; declared 18.12.2008; published 30.03.2010.
  17. Yan, L., Hale, J. J., Lynch, C. L., Budhu, R., Gentry, A., Mills, S. G., Mandala, S. M. (2004). Design and synthesis of conformationally constrained 3–(N–alkylamino)propylphosphonic acids as potent agonists of sphingosine–1–phosphate (S1P) receptors. Bioorganic & Medicinal Chemistry Letters, 14 (19), 4861–4866. doi: 10.1016/j.bmcl.2004.07.049
  18. Yan, L., Budhu, R., Huo, P., Lynch, C. L., Hale, J. J., Mills, S. G., Mandala, S. M. (2006). 2–Aryl(pyrrolidin–4–yl)acetic acids are potent agonists of sphingosine–1–phosphate (S1P) receptors. Bioorganic & Medicinal Chemistry Letters, 16 (13), 3564–3568. doi: 10.1016/j.bmcl.2006.03.090
  19. Newhouse, B., Allen, S., Fauber, B., Anderson, A. S., Eary, C. T., Hansen, J. D., Burgess, L. E. (2004). Racemic and chiral lactams as potent, selective and functionally active CCR4 antagonists. Bioorganic & Medicinal Chemistry Letters, 14 (22), 5537–5542. doi: 10.1016/j.bmcl.2004.09.001
  20. Xu, J., Lin, S., Myers, R. W., Addona, G., Berger, J. P., Campbell, B., Parmee, E. R. (2017). Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorganic & Medicinal Chemistry Letters, 27 (9), 2069–2073. doi: 10.1016/j.bmcl.2016.10.085
  21. Shultz, M., Chen, H.–T., Cho, Y. S., Jiang, L., Fan, J., Liu, G., Majumdar, D., Li, J. (2009). Hydroxamate–based inhibitor of deacetylases. Pat. WO 2009118305 A1; declared 24.03.2009; published 01.10.2009.
  22. Guo, Z., Orth, P., Wong, S.–C., Lavey, B. J., Shih, N.–Y., Niu, X., Kozlowski, J. A. (2009). Discovery of novel spirocyclopropyl hydroxamate and carboxylate compounds as TACE inhibitors. Bioorganic & Medicinal Chemistry Letters, 19 (1), 54–57. doi: 10.1016/j.bmcl.2008.11.034
  23. Nilsson, B. M., Vargas, H. M., Ringdahl, B., & Hacksell, U. (1992). Phenyl–substituted analogs of oxotremorine as muscarinic antagonists. Journal of Medicinal Chemistry, 35 (2), 285–294. doi: 10.1021/jm00080a013
  24. Rosenmund, K. W., Engels, P. (1951). Über die Darstellung von in 5–Stellung phenylierten Butyrolactamen. Archiv Der Pharmazie, 284 (5–6), 209–216. doi: 10.1002/ardp.19512840503
  25. Reppe, W., Mitarbeitern. (1955). Äthinylierung. Justus Liebigs Annalen Der Chemie, 596 (1), 1–4. doi: 10.1002/jlac.19555960102
  26. Shono, T., Kise, N., Kunimi, N., Nomura, R. (1991). Electroreductive Coupling of Aromatic Imines with Electrophiles in the Presence of Chlorotrimethylsilane. Chemistry Letters, 20 (12), 2191–2194. doi: 10.1246/cl.1991.2191
  27. Zhou, Y.–Y., Wang, L.–J., Li, J., Sun, X.–L., Tang, Y. (2012). Side–Arm–Promoted Highly Enantioselective Ring–Opening Reactions and Kinetic Resolution of Donor–Acceptor Cyclopropanes with Amines. Journal of the American Chemical Society, 134 (22), 9066–9069. doi: 10.1021/ja302691r
  28. Rajender Reddy, L., Prasad, K., Prashad, M. (2012). A Protocol for an Asymmetric Synthesis of γ–Amino Acids. The Journal of Organic Chemistry, 77 (14), 6296–6301. doi: 10.1021/jo301177
  29. Guijarro, D., Pablo, Ó., Yus, M. (2013). Synthesis of γ–, δ–, and ε–Lactams by Asymmetric Transfer Hydrogenation of N–(tert–Butylsulfinyl)iminoesters. The Journal of Organic Chemistry, 78 (8), 3647–3654. doi: 10.1021/jo400164y
  30. Emmett, M. R., Grover, H. K., Kerr, M. A. (2012). Tandem Ring–Opening Decarboxylation of Cyclopropane Hemimalonates with Sodium Azide: A Short Route to γ–Aminobutyric Acid Esters. The Journal of Organic Chemistry, 77 (15), 6634–6637. doi: 10.1021/jo3010606
  31. Benati, L., Leardini, R., Minozzi, M., Nanni, D., Spagnolo, P., Strazzari, S., Zanardi, G. (2002). Intramolecular Cyclization of Acyl Radicals onto the Azido Group: A New Radical Approach to Cyclized Lactams†. Organic Letters, 4 (18), 3079–3081. doi: 10.1021/ol026366t
  32. Ivanov, K. L., Villemson, E. V., Budynina, E. M., Ivanova, O. A., Trushkov, I. V., Melnikov, M. Y. (2015). Ring Opening of Donor–Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N–Heterocycles. Chemistry – A European Journal, 21 (13), 4975–4987. doi: 10.1002/chem.201405551
  33. Bertozzi, S., Salvadori, P. (1996). Synthesis of 3–Phenyl and 5–Phenyl–2–pyrrolidinone via Rhodium Catalysed Carbonylation of Allylamines. Synthetic Communications, 26 (16), 2959–2965. doi: 10.1080/00397919608004599
  34. Armanino, N., Carreira, E. M. (2013). Ruthenium–Catalyzed Intramolecular Hydrocarbamoylation of Allylic Formamides: Convenient Access to Chiral Pyrrolidones. Journal of the American Chemical Society, 135 (18), 6814–6817. doi: 10.1021/ja4026787
  35. Shu, C., Liu, M.–Q., Wang, S.–S., Li, L., Ye, L.–W. (2013). Gold–Catalyzed Oxidative Cyclization of Chiral Homopropargyl Amides: Synthesis of Enantioenriched γ–Lactams. The Journal of Organic Chemistry, 78 (7), 3292–3299. doi: 10.1021/jo400127x
  36. Miller, R. D., Goelitz, P. (1981). An efficient and general synthesis of 5–substituted pyrrolidinones. The Journal of Organic Chemistry, 46 (8), 1616–1618. doi: 10.1021/jo00321a017
  37. Das, B. G., Nallagonda, R., Dey, D., & Ghorai, P. (2015). Synthesis of Air– and Moisture–Stable, Storable Chiral Oxorhenium Complexes and Their Application as Catalysts for the Enantioselective Imine Reduction. Chemistry – A European Journal, 21 (36), 12601–12605. doi: 10.1002/chem.201501914
  38. Rajender Reddy, L., Prasad, K., Prashad, M. (2012). A Protocol for an Asymmetric Synthesis of γ–Amino Acids. The Journal of Organic Chemistry, 77 (14), 6296–6301. doi: 10.1021/jo301177f
  39. Shono, T., Kise, N., Kunimi, N., Nomura, R. (1991). Electroreductive Coupling of Aromatic Imines with Electrophiles in the Presence of Chlorotrimethylsilane. Chemistry Letters, 20 (12), 2191–2194. doi: 10.1246/cl.1991.2191
  40. Kise, N., Hamada, Y., Sakurai, T. (2017). Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β–unsaturated esters: Synthesis of 5–aryl substituted γ–butyrolactones and lactams. Tetrahedron, 73 (8), 1143–1156. doi: 10.1016/j.tet.2017.01.013
  41. Cheemala, M. N., Knochel, P. (2007). New P,N–Ferrocenyl Ligands for the Asymmetric Ir–Catalyzed Hydrogenation of Imines. Organic Letters, 9 (16), 3089–3092. doi: 10.1021/ol071168t
  42. Krongauz, E. S., Rusanov, A. L., Renard, T. L. (1970). Uspekhi khimii, 39 (9), 1591–1630.
  43. Wittekind, R. R., Weissman, C. (1972). Synthesis of the 1,8–diazaspiro[4.5] decane system. Journal of Heterocyclic Chemistry, 9 (1), 111–113. doi: 10.1002/jhet.5570090118
  44. Hill, R. (1957). Notes – Synthesis of Spirolactams from Nitrocycloalkanes. The Journal of Organic Chemistry, 22 (7), 830–832. doi: 10.1021/jo01358a606
  45. Vaskevich, R. I., Vaskevich, A. I., Daniliuk, I. Yu., Vovk, M. V. (2013). Zhurnal organicheskoi khimii, 49 (8), 1175–1181.
  46. Imada, Y., Shibata, O., Murahashi, S.–I. (1993). Aza– and oxacarbonylations of allyl phosphates catalyzed by rhodium carbonyl cluster. Selective synthesis of β, γ–unsaturated amides, esters, and acids. Journal of Organometallic Chemistry, 451 (1–2), 183–194. doi: 10.1016/0022–328x(93)83025–q
  47. Yi, P., Zhuangyu, Z., Hongwen, H. (1995). Vinylation of Benzylic Quaternary Ammonium Salts Catalyzed by Palladium. Synthesis, 1995 (03), 245–247. doi: 10.1055/s–1995–3911
  48. Bernardim, B., Burtoloso, A. C. B. (2014). A two–step synthesis of the bioprotective agent JP4–039 from N–Boc–l–leucinal. Tetrahedron, 70 (20),
  49. –3296. doi: 10.1016/j.tet.2013.10.059
  50. Qiu, G., Mamboury, M., Wang, Q., Zhu, J. (2016). Ketenimines from Isocyanides and Allyl Carbonates: Palladium–Catalyzed Synthesis of β,γ–Unsaturated Amides and Tetrazoles. Angewandte Chemie International Edition, 55 (49), 15377–15381. doi: 10.1002/anie.201609034
  51. Rigo, B., Fasseur, D., Cherepy, N., Couturier, D. (1989). Decarboxylation of pyroglutamic acids with P2O5/CH3SO3H : A general synthesis of 5–aryl–2–pyrrolidinones. Tetrahedron Letters, 30 (50), 7057–7060. doi: 10.1016/s0040–4039(01)93422–7
  52. Yang, Y.–F., Li, L.–H., He, Y.–T., Luo, J.–Y., Liang, Y.–M. (2014). Gold(I)–catalyzed rearrangement of alkynylaziridine indoles for the synthesis of spiro–tetrahydro–β–carbolines. Tetrahedron, 70 (3), 702–707. doi: 10.1016/j.tet.2013.11.084
  53. Machrouhi, F., Namy, J.–L. (1998). A new coupling reaction between β–lactones and electrophiles mediated by a system. Tetrahedron, 54 (37), 11111–11122. doi: 10.1016/s0040–4020(98)00651–6
  54. Su, Y., Tu, Y.–Q., Gu, P. (2014). Preparation of Enantioenriched γ–Substituted Lactones via Asymmetric Transfer Hydrogenation of β–Azidocyclopropane Carboxylates Using the Ru–TsDPEN Complex. Organic Letters, 16 (16), 4204–4207. doi: 10.1021/ol501895k
  55. Rodrigo, S. K., Guan, H. (2012). Quick Installation of a 1,4–Difunctionality via Regioselective Nickel–Catalyzed Reductive Coupling of Ynoates and Aldehydes. The Journal of Organic Chemistry, 77 (18), 8303–8309. doi: 10.1021/jo301790q

Published

2018-03-14

How to Cite

(1)
Danyliuk, I. Y.; Vas’kevich, R. I.; Vas’kevich, A. I.; Lukianov, O. O.; Vovk, M. V. The Proton-Initiated Cyclization of N-Alkylamides of Styrylacetic Acids. The Synthesis of 5-Arylpirrolidine-2-Ones. J. Org. Pharm. Chem. 2018, 16, 11-18.

Issue

Section

Original Researches