The effect of 5,11,17,23-tetrakis(diisopropoxyphosphonyl)- 25,26,27,28-terapropoxycalix[4]arene on the chromatographic separation of ecologically hazardous aromatic compounds

Authors

  • O. I. Kalchenko Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • S. O. Cherenok Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • A. V. Solovyov Institute of Organic Chemistry of the NAS of Ukraine, Department of Chemical and Biomolecular Engineering, University of California, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.945

Keywords:

calix[4]arenes, liquid chromatography, aromatic compounds, inclusion complexes, stability constants, separation selectivity

Abstract

Aim. To study the effect of 5,11,17,23 tetrakis(diisopropoxyphosphonyl)-25,26,27,28-tetrapropoxycalix[4]
arene additive to the MeCN/H2O mobile phase on selectivity of the HPLC separation of aromatic compounds using a Zorbax ODS support.
Results and discussion. Calixarene improves the separation due to formation of the Host-Guest inclusion complexes. The linear dependence of 1/k’ on the calixarene concentration allows calculating the stability constants KA of the complexes. The correlation of the separation selectivity induced by the calixarene additives with the ratio of the stability constants of the Host-Guest inclusion complexes of the aromatic analytes was found. The complexation is influenced by logP and pKa parameters of the analytes. Short contacts between the calixarene Host and the aromatic Guest indicate that the inclusion complexes are stabilized by various hydrogen bonds, nonvalence van der Waals, π-π and hydrophobic interactions.
Experimental part. The energy minimized structures of the calixarene complexes with p-fluorophenol, guaiacol, toluene and trichloromethylbezene were calculated using Hyper Chem 8, PM3, vacuum.
Conclusions. The data obtained can be used in design of new phases for HPLC.

Downloads

Download data is not yet available.

References

  1. Gutsche, C. D., Stoddart, J. F. (eds). (1998). Calixarenes revisited. Monographs in supramolecular chemistry.Cambridge: RSC.
  2. Asfari, Z., Asfari, Böhmer, V., Harrowfield, J., Vicens J. (eds). (2001). Calixarenes. Dordrecht: Kluwer.
  3. Böhmer, V. (1995). Calixarenes, Macrocycles with(Almost) Unlimited Possibilities. Angewandte Chemie International Edition in English, 34(7),
  4. –745. https://doi.org/10.1002/anie.199507131
  5. Lumetta, G. J., Rogers, R. D., & Gopalan, A. S. (Eds.). (2000). Calixarenes for Separations. ACS Symposium Series. https://doi.org/10.1021/bk-
  6. -0757
  7. Mandolini, L., & Ungaro, R. (Eds.). (2000). Calixarenes in Action. https://doi.org/10.1142/9781848160354
  8. Cherenok, S., Dutasta, J.-P., & Kalchenko, V. (2006). Phosphorus-Containing Chiral Macrocycles. Current Organic Chemistry, 10(18), 2307–2331.
  9. https://doi.org/10.2174/138527206778992725
  10. Kalchenko, O., Poznanski, J., Marcinowicz, A., Cherenok, S., Solovyov, A., Zielenkiewicz, W., & Kalchenko, V. (2003). Complexation of tetrapropoxycalix[
  11. arene with uracil and adenine derivatives in water-containing solution. Journal of Physical Organic Chemistry, 16(4), 246–252. https://
  12. doi.org/10.1002/poc.595
  13. Kalchenko, O., Drapailo, A., Shishkina, S., Shishkin, O., Kharchenko, S., Gorbatchuk, V., & Kalchenko, V. (2013). Complexation of thiacalix[4]arene methylphosphonic and sulphonic acids with amino acids. Supramolecular Chemistry, 25(5), 263–268. https://doi.org/10.1080/10610278.2012.761342
  14. Lugovskoy, E. V., Gritsenko, P. G., Koshel, T. A., Koliesnik, I. O., Cherenok, S. O., Kalchenko, O. I., … Komisarenko, S. V. (2011). Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS Journal, 278(8), 1244–1251. https://doi.org/10.1111/j.1742-4658.2011.08045.x
  15. Kalchenko, O., Lipkowski, J., & Kalchenko, V. (2017). Chromatography in Supramolecular and Analytical Chemistry of Calixarenes. Comprehensive
  16. Supramolecular Chemistry II, 239–261. https://doi.org/10.1016/b978-0-12-409547-2.13799-0
  17. Hashem, H., Jira, T. (2005). The effect of the process variables on the HPLC separation of tricyclic neuroleptic on a calixarene-bonded stationary
  18. phase. Die Pharmazie, 60, 186–192.
  19. Pfeiffer, J., & Schurig, V. (1999). Enantiomer separation of amino acid derivatives on a new polymeric chiral resorc[4]arene stationary phase by
  20. capillary gas chromatography. Journal of Chromatography A, 840(1), 145–150. https://doi.org/10.1016/s0021-9673(99)00224-1
  21. Glennon, J. D., Horne, E., Hall, K., Cocker, D., Kuhn, A., Harris, S. J., & McKervey, M. A. (1996). Silica-bonded calixarenes in chromatography. Journal
  22. of Chromatography A, 731(1-2), 47–55. https://doi.org/10.1016/0021-9673(95)01080-7
  23. Sokoließ, T., Schönherr, J., Menyes, U., Roth, U., & Jira, T. (2003). Characterization of calixarene- and resorcinarene-bonded stationary phases.
  24. Journal of Chromatography A, 1021(1-2), 71–82. https://doi.org/10.1016/j.chroma.2003.09.014
  25. Sokoließ, T., Menyes, U., Roth, U., & Jira, T. (2002). Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on
  26. calixarene- and resorcinarene-bonded high-performance liquid chromatography stationary phases. Journal of Chromatography A, 948(1-2),
  27. –319. https://doi.org/10.1016/s0021-9673(01)01317-6
  28. Śliwka-Kaszyńska, M. (2007). Calixarenes as Stationary Phases in High Performance Liquid Chromatography. Critical Reviews in Analytical Chemistry,
  29. (3), 211–224. https://doi.org/10.1080/10408340701244672
  30. Schneider, C., Menyes, U., & Jira, T. (2010). Characterization of calixarene-bonded stationary phases. Journal of Separation Science, 33(19), 2930–2942.
  31. https://doi.org/10.1002/jssc.201000281
  32. Hashem, H., Ibrahim, A. E., & Elhenawee, M. (2014). Chromatographic analysis of some drugs employed in erectile dysfunction therapy: Qualitative
  33. and quantitative studies using calixarene stationary phase. Journal of Separation Science, 37(20), 2814–2824. https://doi.org/10.1002/
  34. jssc.201400276
  35. Hisham, H. (2016). Chromatographic Application on a Calixarene Stationary Phase:A Novel HPLC Determination of Flumethasone Pivalate and
  36. Salicylic Acid in their Binary Mixture and Ointment Dosage Form after Two Steps Extraction. UK Journal of Pharmaceutical Biosciences, 4(2), 70.
  37. https://doi.org/10.20510/ukjpb/4/i2/99641
  38. Kalchenko, O. I., Cherenok, S. O., Solovyov, A. V., & Kalchenko, V. I. (2009). Influence of Calixarenes on Chromatographic Separation of Benzene or
  39. Uracil Derivatives. Chromatographia, 70(5-6), 717–721. https://doi.org/10.1365/s10337-009-1229-2
  40. Gerhard, K., Scriba, E. (2012). Chiral recognition mechanisms in analytical separation sciences. Chromatographia, 75, 815–838. https://doi.org/10.1007/
  41. s10337-012-2261-1
  42. Lipkowski, J., Kalchenko, O. I., Slowikowska, J., Kalchenko, V., Lukin, O. V., Markovsky, L. N., Nowakowski, R. (1998). Host-Guest interactions of
  43. calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Stability constants
  44. determination. J. Phys. Org. Chem., 11, 426 –435. https://doi.org/10.1002/(sici)1099-1395(199806)11:6<426::aid-poc963>3.0.co;2-r
  45. Solovyov, A. V., Cherenok, S. O., Kalchenko, O. I., Atamas, L. I., Kazantseva, Z. I., Koshets, I. A., … Kalchenko, V. I. (2011). Synthesis and complexation of amphiphilic calix[4]arene phosphonates with organic molecules in solutions and Langmuir-Blodgett films. Journal of Molecular Liquids,
  46. (2), 117–123. https://doi.org/10.1016/j.molliq.2010.12.007
  47. Product Evaluation. (n.d.). hyper.com. Avialable at: http://www.hyper.com/Download/AllDownloads/tabid/470/Default.aspx.

Downloads

Published

2018-09-19

How to Cite

(1)
Kalchenko, O. I.; Cherenok, S. O.; Solovyov, A. V. The Effect of 5,11,17,23-tetrakis(diisopropoxyphosphonyl)- 25,26,27,28-terapropoxycalix[4]arene on the Chromatographic Separation of Ecologically Hazardous Aromatic Compounds. J. Org. Pharm. Chem. 2018, 16, 50-56.

Issue

Section

Original Researches