Trifluoromethyl-containing 3,4-dihydropyrimidine-2-ones and their condensed analogs

Authors

  • S. V. Mel’nikov Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. M. Tkachuk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. A. Sukach Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.946

Keywords:

3, 4-dihydropyrimidones, CF3-containing derivatives, inter- and intramolecular cyclocondensations, Biginelly reaction, nucleophilic addition, anti-HIV agents

Abstract

The information related to the methods of the synthesis of 4- and 6-trifluoromethyl-3,4-dihydropyrimidine- 2-ones and their condensed analogs as potent molecular platforms for the synthesis of bioactive compounds has been analyzed and systematized. The role of inter- and intramolecular cyclocondensations of CF3-containing substrates, as well as nucleophilic addition to C=N bond as key steps for construction of 4-trifluorinated derivatives has been emphasized. The major part of this article is devoted to the construction of trifluoromethyldihydropirimidones of a high optical purity and their thioanalogs based on the condensation of the chiral ureas and thioureas. A special attention is paid to asymmetric reactions, which are used for the synthesis of chiral analogs of the anti-HIV drug Efavirenz. It has been noted that Biginelly reaction of the corresponding fluorinated ketoesters is the common way for obtaining 6-trifluoromethylpyrimidones. The method allows obtaining the target products in one stage although it has limitations due to the need to isolate intermediate cyclic products, which in the future should be subjected to dehydration. The effect of the catalyst nature on the course of Biginelly reaction of trifluoromethylated substrates has been analyzed. It has been shown that nucleophilic 3,6-addition to 4-CF3- dihydropyrimidones is effective method for the synthesis of dihydroorotic acid derivatives.

Downloads

Download data is not yet available.

References

  1. Ahmed N., van Lier J. E. (2010). TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-
  2. free conditions. Tetrahedron Lett., 48 (31), 5407–5409. https://doi.org/10.1016/j.tetlet.2007.06.005
  3. Crespo, A., El Maatougui, A., Biagini, P., Azuaje, J., Coelho, A., Brea, J., … Sotelo, E. (2013). Discovery of 3,4-Dihydropyrimidin-2(1H)-ones As
  4. a Novel Class of Potent and Selective A2B Adenosine Receptor Antagonists. ACS Medicinal Chemistry Letters, 4(11), 1031–1036. https://doi.
  5. org/10.1021/ml400185v
  6. Azizian, J., Mohammadi, M. K., Firuzi, O., Mirza, B., & Miri, R. (2010). Microwave-Assisted Solvent-Free Synthesis of Bis(dihydropyrimidinone)benzenes
  7. and Evaluation of their Cytotoxic Activity. Chemical Biology & Drug Design, 75(4), 375–380. https://doi.org/10.1111/j.1747-0285.2009.00937.x
  8. China Raju, B., Nageswara Rao, R., Suman, P., Yogeeswari, P., Sriram, D., Shaik, T. B., & Kalivendi, S. V. (2011). Synthesis, structure–activity relationship
  9. of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents.
  10. Bioorganic & Medicinal Chemistry Letters, 21(10), 2855–2859. https://doi.org/10.1016/j.bmcl.2011.03.079
  11. Magnus, N. A., Confalone, P. N., Storace, L., Patel, M., Wood, C. C., Davis, W. P., & Parsons, R. L. (2003). General Scope of 1,4-Diastereoselective
  12. Additions to a 2(3H)-Quinazolinone: Practical Preparation of HIV Therapeutics. The Journal of Organic Chemistry, 68(3), 754–761. https://doi.
  13. org/10.1021/jo0263162
  14. Shoba V. M., Tkachuk V. M, Sukach V. A., Vovk, M. V. (2013). Synthesis, chemical and biological properties of trifluoromethylated pyrimidin-
  15. -ones(thiones) and their fused analogues. Targets in heterocyclic systems. Chemistry and properties, 2013 (17), 147–175.
  16. Sukach, V. A., Golovach, N. M., Melnichenko, N. V., Tsymbal, I. F., & Vovk, M. V. (2008). Optically active 4-amino-4-aryl-5,5,5-trifluoropentan-
  17. -ones: Versatile reagents for synthesis of chiral 4-trifluoromethyl-3,4-dihydroazin-2-ones. Journal of Fluorine Chemistry, 129(12), 1180–1186.
  18. https://doi.org/10.1016/j.jfluchem.2008.09.003
  19. Golovach, N. M., Tkachuk, V. N., Sukach, V. A., & Vovk, M. V. (2012). Asymmetric organocatalytic mannich reaction of 1-aryl-2,2,2-trifluoroethylidenecarbamic acid derivatives with acetone. Russian Journal of Organic Chemistry, 48(9), 1187–1190. https://doi.org/10.1134/s1070428012090060
  20. Vovk, M. V., Lebed’, P. S., Sukach, V. A., & Kornilov, M. Y. (2003). Heterocyclizations of Functionalized Heterocumulenes with C,N- and C,O-Dinucleophiles: II.* Reaction of 1-Chloro- and 1,1-Dichloroalkyl Isocyanates and 1-Chloroalkylidenecarbamates with 2-Bensothiazolylacetonitrile, 2-Benzothiazolylacetates, and Bis(2-benzothiazolyl)methane. Russian Journal of Organic Chemistry, 39(12), 1781–1788. https://doi.org/10.1023/b:rujo.0000019744.08100.85
  21. Sokolov, V. B., & Aksinenko, A. Y. (2005). Synthesis of fluoro-containing pyrimidinones from hexafluoroacetone(ethoxycarbonylimine). Russian
  22. Chemical Bulletin, 54(6), 1518–1522. https://doi.org/10.1007/s11172-005-0439-5
  23. Yang, L.-J., Li, S., Wang, S., Nie, J., & Ma, J.-A. (2014). Nucleophilic Lewis Base Dependent Addition Reactions of Allenoates with Trifluoromethylated
  24. Cyclic Ketimines. The Journal of Organic Chemistry, 79(8), 3547–3558. https://doi.org/10.1021/jo500356t
  25. Sukach, V. A., Tkachuk, V. M., Shoba, V. M., Pirozhenko, V. V., Rusanov, E. B., Chekotilo, A. A., … Vovk, M. V. (2014). Control of Regio- and Enantioselectivity in the Asymmetric Organocatalytic Addition of Acetone to 4-(Trifluoromethyl)pyrimidin-2(1H)-ones. European Journal of Organic
  26. Chemistry, 2014(7), 1452–1460. https://doi.org/10.1002/ejoc.201301542
  27. Tkachuk, V. M., Sukach, V. A., Kovalchuk, K. V., Vovk, M. V., & Nenajdenko, V. G. (2015). Development of an efficient route to CF3-substituted pyrrolopyrimidines through understanding the competition between Michael and aza-Henry reactions. Organic & Biomolecular Chemistry, 13(5),
  28. –1428. https://doi.org/10.1039/c4ob02233e
  29. Melnykov, S. V., Pataman, A. S., Dmytriv, Y. V., Shishkina, S. V., Vovk, M. V., & Sukach, V. A. (2017). Regioselective decarboxylative addition of malonic
  30. acid and its mono(thio)esters to 4-trifluoromethylpyrimidin-2(1H)-ones. Beilstein Journal of Organic Chemistry, 13, 2617–2625. https://doi.
  31. org/10.3762/bjoc.13.259
  32. Corbett, J. W., Pan, S., Markwalder, J. A., Cordova, B. C., Klabe, R. M., Garber, S., … Erickson-Viitanen, S. K. (2001). 3,3a-Dihydropyrano[4,3,2- de ]
  33. quinazolin-2(1 H )-ones are potent non-nucleoside reverse transcriptase inhibitors. Bioorganic & Medicinal Chemistry Letters, 11(2), 211–214.
  34. https://doi.org/10.1016/s0960-894x(00)00624-7
  35. Jiang, B., & Si, Y.-G. (2004). Highly Enantioselective Construction of a Chiral Tertiary Carbon Center by Alkynylation of a CyclicN-Acyl Ketimine: An
  36. Efficient Preparation of HIV Therapeutics. Angewandte Chemie International Edition, 43(2), 216–218. https://doi.org/10.1002/anie.200352301
  37. Jiang, B., Dong, J. J., Si, Y. G., Zhao, X. L., Huang, Z. G., & Xu, M. (2008). Highly Enantioselective Construction of a Quaternary Carbon Center of
  38. Dihydroquinazoline by Asymmetric Mannich Reaction and Chiral Recognition. Advanced Synthesis & Catalysis, 350(9), 1360–1366. https://doi.
  39. org/10.1002/adsc.200800039
  40. Zhang, F.-G., Zhu, X.-Y., Li, S., Nie, J., & Ma, J.-A. (2012). Highly enantioselective organocatalytic Strecker reaction of cyclic N-acyl trifluoromethylketimines:
  41. synthesis of anti-HIV drug DPC 083. Chemical Communications, 48(94), 11552–11554. https://doi.org/10.1039/c2cc36307k
  42. Yuan, H.-N., Wang, S., Nie, J., Meng, W., Yao, Q., & Ma, J.-A. (2013). Hydrogen-Bond-Directed Enantioselective Decarboxylative Mannich Reaction
  43. of β-Ketoacids with Ketimines: Application to the Synthesis of Anti-HIV Drug DPC 083. Angewandte Chemie International Edition, 52(14),
  44. –3873. https://doi.org/10.1002/anie.201210361
  45. Yuan, H.-N., Li, S., Nie, J., Zheng, Y., & Ma, J.-A. (2013). Highly Enantioselective Decarboxylative Mannich Reaction of Malonic Acid Half Oxyesters with Cyclic Trifluoromethyl Ketimines: Synthesis of β-Amino Esters and Anti-HIV Drug DPC 083. Chemistry - A European Journal, 19(47), 15856–15860.
  46. https://doi.org/10.1002/chem.201303307
  47. Zhang, F.-G., Ma, H., Nie, J., Zheng, Y., Gao, Q., & Ma, J.-A. (2012). Enantioselective Diynylation of Cyclic N-Acyl Ketimines: Access to Chiral Trifluoromethylated Tertiary Carbinamines. Advanced Synthesis & Catalysis, 354(8), 1422–1428. https://doi.org/10.1002/adsc.201100926
  48. Zhang, K.-F., Nie, J., Guo, R., Zheng, Y., & Ma, J.-A. (2013). Chiral Phosphoric Acid-Catalyzed Asymmetric Aza-Friedel-Crafts Reaction of Indoles
  49. with CyclicN-Acylketimines: Enantioselective Synthesis of Trifluoromethyldihydroquinazolines. Advanced Synthesis & Catalysis, 355(17), 3497–3502. https://doi.org/10.1002/adsc.201300534
  50. Zhou, D., Huang, Z., Yu, X., Wang, Y., Li, J., Wang, W., & Xie, H. (2015). A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel–Crafts Reaction
  51. of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols. Organic Letters, 17(22), 5554–5557. https://doi.org/10.1021/
  52. acs.orglett.5b02668
  53. Zhou, B., Jiang, C., Gandi, V. R., Lu, Y., & Hayashi, T. (2016). Palladium-Catalyzed Asymmetric Arylation of Trifluoromethylated/Perfluoroalkylated 2-Quinazolinones with High Enantioselectivity. Chemistry - A European Journal, 22(37), 13068–13071. https://doi.org/10.1002/chem.201603105
  54. Dai, J., Xiong, D., Yuan, T., Liu, J., Chen, T., & Shao, Z. (2017). Chiral Primary Amine Catalysis for Asymmetric Mannich Reactions of Aldehydes
  55. with Ketimines: Stereoselectivity and Reactivity. Angewandte Chemie International Edition, 56(41), 12697–12701. https://doi.org/10.1002/
  56. anie.201706304
  57. Biginelli, P. (1891). Ueber Aldehyduramide des Acetessigäthers. Berichte Der Deutschen Chemischen Gesellschaft, 24(1), 1317–1319. https://doi.
  58. org/10.1002/cber.189102401228
  59. Rutter, H. A., & Gustafson, L. O. (1954). Synthesis of some 2-oxo-4-aryl-5-carbethoxy-6-trifluoromethyl1,2,3,4-tetrahydropyrimidines. Journal of
  60. the Franklin Institute, 258(5), 413–415. https://doi.org/10.1016/0016-0032(54)90837-6
  61. Kappe, C. O., & Falsone, S. F. (1998). Polyphosphate Ester-Mediated Synthesis of Dihydropyrimidines. Improved Conditions for the Biginelli Reaction.
  62. Synlett, 1998(7), 718–720. https://doi.org/10.1055/s-1998-1764
  63. Oliver Kappe, C., Fabio Falsone, S., M. F. Fabian, W., & Belaj, F. (1999). Isolation, Conformational Analysis and X-Ray Structure Determination of a Trifluoromethyl- stabilized Hexahydropyrimidine — An Intermediate in the Biginelli Reaction. Heterocycles, 51(1), 77. https://doi.org/10.3987/com-98-8336
  64. Barrow, J. C., Nantermet, P. G., Selnick, H. G., Glass, K. L., Rittle, K. E., Gilbert, K. F., … Forray, C. (2000). In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1AReceptor Antagonists for the Treatment of Benign Prostatic Hyperplasia. Journal of Medicinal
  65. Chemistry, 43(14), 2703–2718. https://doi.org/10.1021/jm990612y
  66. Ma, Y., Qian, C., Wang, L., & Yang, M. (2000). Lanthanide Triflate Catalyzed Biginelli Reaction. One-Pot Synthesis of Dihydropyrimidinones under
  67. Solvent-Free Conditions. The Journal of Organic Chemistry, 65(12), 3864–3868. https://doi.org/10.1021/jo9919052
  68. Yadav, J. S., Reddy, B. V. S., Bhaskar Reddy, K., Sarita Raj, K., & Prasad, A. R. (2001). Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones
  69. with ceric ammonium nitrate†. Journal of the Chemical Society, Perkin Transactions 1, (16), 1939–1941. https://doi.org/10.1039/b102565c
  70. Varala, R., Alam, M. M., & Adapa, S. A. (2003). Bismuth Triflate Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones: An Improved
  71. Protocol for the Biginelli Reaction. ChemInform, 34(15). https://doi.org/10.1002/chin.200315157
  72. Putilova, E. S., Troitskii, N. A., Zlotin, S. G., Khudina, O. G., Burgart, Y. V., Saloutin, V. I., & Chupakhin, O. N. (2006). One-step solvent-free synthesis
  73. of fluoroalkyl-substituted 4-hydroxy-2-oxo(thioxo)hexahydropyrimidines in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate.
  74. Russian Journal of Organic Chemistry, 42(9), 1392–1395. https://doi.org/10.1134/s1070428006090259
  75. Vijay K., Ganapaty S., Rao A. S. (2010). Synthesis, characterization and biological evaluation of some dihydropyrimidinones. Asian J. Chem., 22 (4),
  76. –2528.
  77. Wu, M., Yu, J., Zhao, W., Wu, J., & Cao, S. (2011). One-pot synthesis of difluoromethyl-containing dihydropyrimidinones catalyzed by Yb(PFO)3 under
  78. solvent and dehydrating agent free conditions. Journal of Fluorine Chemistry, 132(3), 155–159. https://doi.org/10.1016/j.jfluchem.2010.12.010
  79. Konkala, K., Sabbavarapu, N. M., Katla, R., Durga, N. Y. V., Kumar Reddy T, V., Bethala L.A., P. D., & Rachapudi B.N., P. (2012). Revisit to the Biginelli
  80. reaction: a novel and recyclable bioglycerol-based sulfonic acid functionalized carbon catalyst for one-pot synthesis of substituted 3,4-dihydropyrimidin-
  81. -(1H)-ones. Tetrahedron Letters, 53(15), 1968–1973. https://doi.org/10.1016/j.tetlet.2012.02.018
  82. Bigdeli, M. A., Gholami, G., & Sheikhhosseini, E. (2011). P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli
  83. reaction in water and under solvent free conditions. Chinese Chemical Letters, 22(8), 903–906. https://doi.org/10.1016/j.cclet.2010.12.030
  84. Timoshenko, V. M., Markitanov, Y. N., & Shermolovich, Y. G. (2011). Preparation of pyrimidine derivatives through three-component reactions of dialkyl (2-oxo-3,3,3-trifluoropropyl)phosphonates. Chemistry of Heterocyclic Compounds, 47(8), 977–982. https://doi.org/10.1007/s10593-011-0863-4
  85. Azizian, J., Mirza, B., Mojtahedi, M. M., Abaee, M. S., & Sargordan, M. (2008). Biginelli reaction for synthesis of novel trifluoromethyl derivatives
  86. of bis(tetrahydropyrimidinone)benzenes. Journal of Fluorine Chemistry, 129(11), 1083–1089. https://doi.org/10.1016/j.jfluchem.2008.06.025
  87. Mirza B., Sargordan M., Fazaeli R. (2012). Microwave-Assisted Synthesis of Bis(dihydropyrimidinone)benzenes. Asian J. Chem., 24 (4), 1421–1424.
  88. Sukach, V. A., Resetnic, A. A., Tkachuk, V. M., Lin, Z., Kortz, U., Vovk, M. V., & Röschenthaler, G.-V. (2015). Synthesis of Trifluoromethylated Analogues
  89. of 4,5-Dihydroorotic Acid. European Journal of Organic Chemistry, 2015(6), 1290–1301. https://doi.org/10.1002/ejoc.201403495
  90. Tkachuk V. M., Melnykov S. V., Sukach V. A., Vovk, M. V. (2017). The addition of β-ketoacids to 4-(trifluoromethyl)pyrimidin-2(1H)-ones with decarboxylation: an effective method for the synthesis of 4-(2-oxoalkyl)-6-(trifluoromethyl)-3,4-dihydropyrimidin-2-ones. Chem. Heterocycl. Compd.,
  91. (10), 1124–1127.

Published

2018-09-19

How to Cite

(1)
Mel’nikov, S. V.; Tkachuk, V. M.; Sukach, V. A.; Vovk, M. V. Trifluoromethyl-Containing 3,4-Dihydropyrimidine-2-Ones and Their Condensed Analogs. J. Org. Pharm. Chem. 2018, 16, 3-23.

Issue

Section

Original Researches