Development and validation of the HPLC/UV-procedure of secnidazole determination
DOI:
https://doi.org/10.24959/ophcj.18.948Keywords:
secnidazole, high-performance liquid chromatography, validationAbstract
Secnidazole is one of antiprotozoal medicines from the group of 5-nitroimidazoles, the method of HPLC with different types of detection is widely used for secnidazole determination.
Aim. To develop the HPLC/UV-procedure of secnidazole quantification with application of the system of a “MiLiChrome® A-02” HPLC-analyzer and carry out the step-by-step validation of the procedure developed. Results and discussion. The specificity of the chromatographic conditions proposed was confirmed in relation to other medicines of the group of 5-nitroimidazoles (metronidazole, tinidazole, ornidazole and nimorazole). The retention time for secnidazole was 8.16 min. 0.01 M solution of hydrochloric acid was proposed for preparation of the reference and model solutions in developing the HPLC/UV-procedure of secnidazole quantification. To prove the possibility of application of the procedure proposed in further analysis its validation was carried out in the variants of the method of the calibration curve and the method of standard. Such validation parameters as in-process stability, linearity/calibration model, accuracy and precision (repeatability) were estimated using model solutions. Experimental part. The HPLC/UV analyses were performed using a MiLiChrome® A-02 high pressure liquid chromatograph (EcoNova, Russia). Eluent A (0.2 M LiClO4 – 0.005 M HClO4) and Eluent B (acetonitrile) were used as the mobile phase components. The HPLC microcolumn with the size of Ø2 × 75 mm and the ProntoSIL 120-5-C18 AQ reversed phase, 5 μm (BISCHOFF Analysentechnik und -geräte GmbH, Germany) was used as an analytical column. The analysis was performed at 40 °С and the flow rate of 100 μl/min. The mobile phase was run in the gradient elution mode, namely from 5 % to 100 % of Eluent B for 40 min, then 100 % of Eluent B for 3 min. Detection was performed at 277 nm. Conclusions. A new procedure of the secnidazole quantitative determination by the method of HPLC/UV has been developed. Its validation has been carried out, and acceptability for its application has been shown.
Downloads
References
- Videau, D., Niel, G., Siboulet, A., & Catalan, F. (1978). Secnidazole. A 5-nitroimidazole derivative with a long half-life. Sexually Transmitted Infections,
- (2), 77–80. https://doi.org/10.1136/sti.54.2.77
- Symonds, J. (1979). Secnidazole—a nitroimidazole with a prolonged serum half-life. Journal of Antimicrobial Chemotherapy, 5(4), 484–486.
- https://doi.org/10.1093/jac/5.4.484
- Brook, I. (2016). Spectrum and treatment of anaerobic infections. Journal of Infection and Chemotherapy, 22(1), 1–13. https://doi.org/10.1016/j.
- jiac.2015.10.010
- Lamp, K. C., Freeman, C. D., Klutman, N. E., & Lacy, M. K. (1999). Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials.
- Clinical Pharmacokinetics, 36(5), 353–373. https://doi.org/10.2165/00003088-199936050-00004
- Jarrad, A. M., Debnath, A., Miyamoto, Y., Hansford, K. A., Pelingon, R., Butler, M. S., … Cooper, M. A. (2016). Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. European Journal of Medicinal Chemistry, 120,
- –362. https://doi.org/10.1016/j.ejmech.2016.04.064
- Sobel, R., & Sobel, J. D. (2015). Metronidazole for the treatment of vaginal infections. Expert Opinion on Pharmacotherapy, 16(7), 1109–1115.
- https://doi.org/10.1517/14656566.2015.1035255
- Castelli, M. (1997). In-vitro studies of two 5-nitroimidazole derivatives. Journal of Antimicrobial Chemotherapy, 40(1), 19–25. https://doi.
- org/10.1093/jac/40.1.19
- Mandalapu, D., Kushwaha, B., Gupta, S., Singh, N., Shukla, M., Kumar, J., … Sharma, V. L. (2016). 2-Methyl-4/5-nitroimidazole derivatives potentiated
- against sexually transmitted Trichomonas: Design, synthesis, biology and 3D-QSAR study. European Journal of Medicinal Chemistry, 124,
- –839. https://doi.org/10.1016/j.ejmech.2016.09.006
- Pasupuleti, V., Escobedo, A. A., Deshpande, A., Thota, P., Roman, Y., & Hernandez, A. V. (2014). Efficacy of 5-Nitroimidazoles for the Treatment
- of Giardiasis: A Systematic Review of Randomized Controlled Trials. PLoS Neglected Tropical Diseases, 8(3), e2733. https://doi.org/10.1371/
- journal.pntd.0002733
- Thulkar, J., Kriplani, A., & Agarwal, N. (2012). A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in
- bacterial vaginosis. Indian Journal of Pharmacology, 44(2), 243. https://doi.org/10.4103/0253-7613.93859
- Li, X., Sun, J., Wang, G., Zheng, Y., Yan, B., Xie, H., … Ren, H. (2007). Determination of secnidazole in human plasma by high-performance liquid
- chromatography with UV detection and its application to the bioequivalence studies. Biomedical Chromatography, 21(3), 304–309. https://doi.
- org/10.1002/bmc.758
- Ravi, S. K., Naidu, M. U. R., Sekhar, E. C., Rao, T. R. K., Shobha, J. C., Rani, P. U., & Surya, K. J. (1997). Rapid and selective analysis of secnidazole in
- human plasma using high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences
- and Applications, 691(1), 208–211. https://doi.org/10.1016/s0378-4347(96)00419-7
- El Walily, A. F. M., Abdine, H. H., Razak, O. A., & Zamel, S. (2000). Spectrophotometric and HPLC determination of secnidazole in pharmaceutical
- tablets. Journal of Pharmaceutical and Biomedical Analysis, 22(6), 887–897. https://doi.org/10.1016/s0731-7085(99)00290-3
- Mitrowska, K., & Antczak, M. (2017). Development and validation of a liquid chromatography with tandem mass spectrometry method for the determination
- of nitroimidazole residues in beeswax. Journal of Separation Science, 40(5), 1158–1166. https://doi.org/10.1002/jssc.201600928
- Hernández-Mesa, M., Orazio, G. D., Rocco, A., García-Campaña, A. M., Blanco, C. C., & Fanali, S. (2015). Capillary electrochromatography-mass spectrometry for the determination of 5-nitroimidazole antibiotics in urine samples. Electrophoresis, 36(20), 2606–2615. https://doi.org/10.1002/
- elps.201500126
- Rúbies, A., Sans, G., Kumar, P., Granados, M., Companyó, R., & Centrich, F. (2015). High-throughput method for the determination of nitroimidazoles
- in muscle samples by liquid chromatography coupled to mass spectrometry. Analytical and Bioanalytical Chemistry, 407(15), 4411–4421.
- https://doi.org/10.1007/s00216-014-8436-x
- Du, J., Zhang, Y., Chen, Y., Liu, D., Chen, X., & Zhong, D. (2014). Enantioselective HPLC determination and pharmacokinetic study of secnidazole
- enantiomers in rats. Journal of Chromatography B, 965, 224–230. https://doi.org/10.1016/j.jchromb.2014.06.036
- Sun, H., Wang, F., Ai, L., Guo, C., Chen, R. (2009). Validated method for determination of eight banned nitroimidazole residues in natural casings
- by LC/MS/MS with solid-phase extraction. Journal of AOAC International, 92 (2), 612–621.
- Sun, H.-W., Wang, F.-C., & Ai, L.-F. (2007). Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with
- solid-phase extraction. Journal of Chromatography B, 857(2), 296–300. https://doi.org/10.1016/j.jchromb.2007.07.039
- Bakshi, M., & Singh, S. (2004). ICH guidance in practice: establishment of inherent stability of secnidazole and development of a validated
- stability-indicating high-performance liquid chromatographic assay method. Journal of Pharmaceutical and Biomedical Analysis, 36(4), 769–775.
- https://doi.org/10.1016/j.jpba.2004.08.008
- Shovkova, O. V., Klimenko, L. Yu., Kovalenko, S. M., Zhukova, T. V. (2017). Development and Validation of UV-Spectrophotometric Procedures for
- Secnidazole Quantitative Determination. Journal of Pharmaceutical Sciences and Research, 9 (4), 338–348.
- Azarova, I. N., Baram, G. I. (2014). Sorbtcionnye i khromatograficheskie protcessy, 14 (1), 858–867.
- Klimenko, L. Yu., Petyunin, G. P. (2014). Development of approaches to validation of UV-spectrophotometric methods of quantitative determination
- in forensic and toxicological analysis: linearity and application range. Farmats. chasopys, 2 (30), 46–51.
- Klimenko, L. Yu., Petyunin, G. P., Trut, S. M., Moroz, V. P. (2014). Aktualni pytannia farmatsii i medychnoi nauky ta praktyky, 2 (15), 15–22.
- Klimenko, L. Yu., Trut, S. M., Petyunin, G. P., Kostina, T. A. (2014). Determining accuracy in validation of UV-spectrophotometric methods of quantitative measurement in forensic toxicological analysis. Ukraïns’kij bìofarmacevtičnij žurnal, 2 (31), 55–67.
- Klimenko, L. Yu., Trut, S. M., Mykytenko, O. Ye. (2014). Approaches to determination of precision for UV-spectrophotometric methods of quantitative
- determination in forensic and toxicological analysis. Farmatciia Kazakhstana, 3 (154), 44–48.
- Klimenko, L. Yu. (2016 Kompleksnyi pidkhid do rozrobky ta validatsii metodyk kilkisnoho vyznachennia analitiv u biolohichnykh ridynakh v
- khimiko-toksykolohichnomu analizi.DSc thesis, National University of Pharmacy (Kharkiv, Ukraine).
- Klimenko, L. Yu. (2014). Farmatsyia Kazakhstana, 4 (155), 31–35.
- Klimenko, L. Yu., Trut, S. M., Poluyan, S. М. (2014). Determination of validation characteristics of UV-spec-trophotometric method of doxylamine
- quantitative determination in blood in the variant of the method of standard. Vìsnik farmacìï, 2 (78). 53–58. https://doi.org/10.24959/nphj.14.1969
- Derzhavna farmakopeia Ukrainy, 2–e vyd. (2015). Kharkiv: Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv, 1, 1128.
- Gryzodub, O. I. (2016). Standartizovannye protcedury validatcii metodik kontrolia kachestva lekarstvennykh sredstv. Kharkiv. DP “Ukrainskyi
- naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv”, 396.
- Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological
- Specimens (2009). United Nations Office on Drugs and Crime, Laboratory and Scientific Section, New York.
- Moffat, A. C., Osselton, M. D., Widdop, B. (eds.). (2011). Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem
- material. Pharmaceutical Press, London, 4th ed. https://doi.org/10.1080/00450618.2011.620006
- Danzer, K., Otto, M., Currie, L. A. (2004). Guidelines for calibration in analytical chemistry. Part 2. Multispecies calibration. Pure and Applied
- Chemistry, 76 (6), 1215–1225.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).