Development and validation of the HPLC/UV-procedure of secnidazole determination

Authors

  • O. V. Shovkova National University of Pharmacy, Ukraine
  • L. Yu. Klimenko National University of Pharmacy, Ukraine
  • Z. V. Shovkova National University of Pharmacy, Ukraine
  • T. A. Kostina National University of Pharmacy, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.948

Keywords:

secnidazole, high-performance liquid chromatography, validation

Abstract

Secnidazole is one of antiprotozoal medicines from the group of 5-nitroimidazoles, the method of HPLC with different types of detection is widely used for secnidazole determination.
Aim. To develop the HPLC/UV-procedure of secnidazole quantification with application of the system of a “MiLiChrome® A-02” HPLC-analyzer and carry out the step-by-step validation of the procedure developed. Results and discussion. The specificity of the chromatographic conditions proposed was confirmed in relation to other medicines of the group of 5-nitroimidazoles (metronidazole, tinidazole, ornidazole and nimorazole). The retention time for secnidazole was 8.16 min. 0.01 M solution of hydrochloric acid was proposed for preparation of the reference and model solutions in developing the HPLC/UV-procedure of secnidazole quantification. To prove the possibility of application of the procedure proposed in further analysis its validation was carried out in the variants of the method of the calibration curve and the method of standard. Such validation parameters as in-process stability, linearity/calibration model, accuracy and precision (repeatability) were estimated using model solutions.      Experimental part. The HPLC/UV analyses were performed using a MiLiChrome® A-02 high pressure liquid chromatograph (EcoNova, Russia). Eluent A (0.2 M LiClO4 – 0.005 M HClO4) and Eluent B (acetonitrile) were used as the mobile phase components. The HPLC microcolumn with the size of Ø2 × 75 mm and the ProntoSIL 120-5-C18 AQ reversed phase, 5 μm (BISCHOFF Analysentechnik und -geräte GmbH, Germany) was used as an analytical column. The analysis was performed at 40 °С and the flow rate of 100 μl/min. The mobile phase was run in the gradient elution mode, namely from 5 % to 100 % of Eluent B for 40 min, then 100 % of Eluent B for 3 min. Detection was performed at 277 nm.                                                                      Conclusions. A new procedure of the secnidazole quantitative determination by the method of HPLC/UV has been developed. Its validation has been carried out, and acceptability for its application has been shown.

Downloads

Download data is not yet available.

References

  1. Videau, D., Niel, G., Siboulet, A., & Catalan, F. (1978). Secnidazole. A 5-nitroimidazole derivative with a long half-life. Sexually Transmitted Infections,
  2. (2), 77–80. https://doi.org/10.1136/sti.54.2.77
  3. Symonds, J. (1979). Secnidazole—a nitroimidazole with a prolonged serum half-life. Journal of Antimicrobial Chemotherapy, 5(4), 484–486.
  4. https://doi.org/10.1093/jac/5.4.484
  5. Brook, I. (2016). Spectrum and treatment of anaerobic infections. Journal of Infection and Chemotherapy, 22(1), 1–13. https://doi.org/10.1016/j.
  6. jiac.2015.10.010
  7. Lamp, K. C., Freeman, C. D., Klutman, N. E., & Lacy, M. K. (1999). Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials.
  8. Clinical Pharmacokinetics, 36(5), 353–373. https://doi.org/10.2165/00003088-199936050-00004
  9. Jarrad, A. M., Debnath, A., Miyamoto, Y., Hansford, K. A., Pelingon, R., Butler, M. S., … Cooper, M. A. (2016). Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. European Journal of Medicinal Chemistry, 120,
  10. –362. https://doi.org/10.1016/j.ejmech.2016.04.064
  11. Sobel, R., & Sobel, J. D. (2015). Metronidazole for the treatment of vaginal infections. Expert Opinion on Pharmacotherapy, 16(7), 1109–1115.
  12. https://doi.org/10.1517/14656566.2015.1035255
  13. Castelli, M. (1997). In-vitro studies of two 5-nitroimidazole derivatives. Journal of Antimicrobial Chemotherapy, 40(1), 19–25. https://doi.
  14. org/10.1093/jac/40.1.19
  15. Mandalapu, D., Kushwaha, B., Gupta, S., Singh, N., Shukla, M., Kumar, J., … Sharma, V. L. (2016). 2-Methyl-4/5-nitroimidazole derivatives potentiated
  16. against sexually transmitted Trichomonas: Design, synthesis, biology and 3D-QSAR study. European Journal of Medicinal Chemistry, 124,
  17. –839. https://doi.org/10.1016/j.ejmech.2016.09.006
  18. Pasupuleti, V., Escobedo, A. A., Deshpande, A., Thota, P., Roman, Y., & Hernandez, A. V. (2014). Efficacy of 5-Nitroimidazoles for the Treatment
  19. of Giardiasis: A Systematic Review of Randomized Controlled Trials. PLoS Neglected Tropical Diseases, 8(3), e2733. https://doi.org/10.1371/
  20. journal.pntd.0002733
  21. Thulkar, J., Kriplani, A., & Agarwal, N. (2012). A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in
  22. bacterial vaginosis. Indian Journal of Pharmacology, 44(2), 243. https://doi.org/10.4103/0253-7613.93859
  23. Li, X., Sun, J., Wang, G., Zheng, Y., Yan, B., Xie, H., … Ren, H. (2007). Determination of secnidazole in human plasma by high-performance liquid
  24. chromatography with UV detection and its application to the bioequivalence studies. Biomedical Chromatography, 21(3), 304–309. https://doi.
  25. org/10.1002/bmc.758
  26. Ravi, S. K., Naidu, M. U. R., Sekhar, E. C., Rao, T. R. K., Shobha, J. C., Rani, P. U., & Surya, K. J. (1997). Rapid and selective analysis of secnidazole in
  27. human plasma using high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences
  28. and Applications, 691(1), 208–211. https://doi.org/10.1016/s0378-4347(96)00419-7
  29. El Walily, A. F. M., Abdine, H. H., Razak, O. A., & Zamel, S. (2000). Spectrophotometric and HPLC determination of secnidazole in pharmaceutical
  30. tablets. Journal of Pharmaceutical and Biomedical Analysis, 22(6), 887–897. https://doi.org/10.1016/s0731-7085(99)00290-3
  31. Mitrowska, K., & Antczak, M. (2017). Development and validation of a liquid chromatography with tandem mass spectrometry method for the determination
  32. of nitroimidazole residues in beeswax. Journal of Separation Science, 40(5), 1158–1166. https://doi.org/10.1002/jssc.201600928
  33. Hernández-Mesa, M., Orazio, G. D., Rocco, A., García-Campaña, A. M., Blanco, C. C., & Fanali, S. (2015). Capillary electrochromatography-mass spectrometry for the determination of 5-nitroimidazole antibiotics in urine samples. Electrophoresis, 36(20), 2606–2615. https://doi.org/10.1002/
  34. elps.201500126
  35. Rúbies, A., Sans, G., Kumar, P., Granados, M., Companyó, R., & Centrich, F. (2015). High-throughput method for the determination of nitroimidazoles
  36. in muscle samples by liquid chromatography coupled to mass spectrometry. Analytical and Bioanalytical Chemistry, 407(15), 4411–4421.
  37. https://doi.org/10.1007/s00216-014-8436-x
  38. Du, J., Zhang, Y., Chen, Y., Liu, D., Chen, X., & Zhong, D. (2014). Enantioselective HPLC determination and pharmacokinetic study of secnidazole
  39. enantiomers in rats. Journal of Chromatography B, 965, 224–230. https://doi.org/10.1016/j.jchromb.2014.06.036
  40. Sun, H., Wang, F., Ai, L., Guo, C., Chen, R. (2009). Validated method for determination of eight banned nitroimidazole residues in natural casings
  41. by LC/MS/MS with solid-phase extraction. Journal of AOAC International, 92 (2), 612–621.
  42. Sun, H.-W., Wang, F.-C., & Ai, L.-F. (2007). Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with
  43. solid-phase extraction. Journal of Chromatography B, 857(2), 296–300. https://doi.org/10.1016/j.jchromb.2007.07.039
  44. Bakshi, M., & Singh, S. (2004). ICH guidance in practice: establishment of inherent stability of secnidazole and development of a validated
  45. stability-indicating high-performance liquid chromatographic assay method. Journal of Pharmaceutical and Biomedical Analysis, 36(4), 769–775.
  46. https://doi.org/10.1016/j.jpba.2004.08.008
  47. Shovkova, O. V., Klimenko, L. Yu., Kovalenko, S. M., Zhukova, T. V. (2017). Development and Validation of UV-Spectrophotometric Procedures for
  48. Secnidazole Quantitative Determination. Journal of Pharmaceutical Sciences and Research, 9 (4), 338–348.
  49. Azarova, I. N., Baram, G. I. (2014). Sorbtcionnye i khromatograficheskie protcessy, 14 (1), 858–867.
  50. Klimenko, L. Yu., Petyunin, G. P. (2014). Development of approaches to validation of UV-spectrophotometric methods of quantitative determination
  51. in forensic and toxicological analysis: linearity and application range. Farmats. chasopys, 2 (30), 46–51.
  52. Klimenko, L. Yu., Petyunin, G. P., Trut, S. M., Moroz, V. P. (2014). Aktualni pytannia farmatsii i medychnoi nauky ta praktyky, 2 (15), 15–22.
  53. Klimenko, L. Yu., Trut, S. M., Petyunin, G. P., Kostina, T. A. (2014). Determining accuracy in validation of UV-spectrophotometric methods of quantitative measurement in forensic toxicological analysis. Ukraïns’kij bìofarmacevtičnij žurnal, 2 (31), 55–67.
  54. Klimenko, L. Yu., Trut, S. M., Mykytenko, O. Ye. (2014). Approaches to determination of precision for UV-spectrophotometric methods of quantitative
  55. determination in forensic and toxicological analysis. Farmatciia Kazakhstana, 3 (154), 44–48.
  56. Klimenko, L. Yu. (2016 Kompleksnyi pidkhid do rozrobky ta validatsii metodyk kilkisnoho vyznachennia analitiv u biolohichnykh ridynakh v
  57. khimiko-toksykolohichnomu analizi.DSc thesis, National University of Pharmacy (Kharkiv, Ukraine).
  58. Klimenko, L. Yu. (2014). Farmatsyia Kazakhstana, 4 (155), 31–35.
  59. Klimenko, L. Yu., Trut, S. M., Poluyan, S. М. (2014). Determination of validation characteristics of UV-spec-trophotometric method of doxylamine
  60. quantitative determination in blood in the variant of the method of standard. Vìsnik farmacìï, 2 (78). 53–58. https://doi.org/10.24959/nphj.14.1969
  61. Derzhavna farmakopeia Ukrainy, 2–e vyd. (2015). Kharkiv: Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv, 1, 1128.
  62. Gryzodub, O. I. (2016). Standartizovannye protcedury validatcii metodik kontrolia kachestva lekarstvennykh sredstv. Kharkiv. DP “Ukrainskyi
  63. naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv”, 396.
  64. Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological
  65. Specimens (2009). United Nations Office on Drugs and Crime, Laboratory and Scientific Section, New York.
  66. Moffat, A. C., Osselton, M. D., Widdop, B. (eds.). (2011). Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem
  67. material. Pharmaceutical Press, London, 4th ed. https://doi.org/10.1080/00450618.2011.620006
  68. Danzer, K., Otto, M., Currie, L. A. (2004). Guidelines for calibration in analytical chemistry. Part 2. Multispecies calibration. Pure and Applied
  69. Chemistry, 76 (6), 1215–1225.

Downloads

Published

2018-09-19

How to Cite

(1)
Shovkova, O. V.; Klimenko, L. Y.; Shovkova, Z. V.; Kostina, T. A. Development and Validation of the HPLC/UV-Procedure of Secnidazole Determination. J. Org. Pharm. Chem. 2018, 16, 30-38.

Issue

Section

Original Researches