Luminescent properties of substituted 4-aminophthalimides: computations vs. experiment
DOI:
https://doi.org/10.24959/ophcj.20.189458Keywords:
experimental luminescence spectra, absorption, fluorescence, Stokes shifts, 4-aminophthalimides, time-dependent density functional theory, polarizable continuum modelAbstract
Aim. To perform a combined experimental and computational study on the luminescent properties of practically important class of organic dyes – 4-aminophthalimides.
Results and discussion. The absorption and fluorescence spectra of 4-aminophthalimide derivatives in polar protic and aprotic solvents were computed and matched vs. the experimental data. The changes in emission spectra are mainly related to the NH2-group derivatization. The methyl substitution of amide hydrogen causes a batochromic shift of about 7 nm in the absorption peak and a negligible hypsochromic shift in the fluorescence peak, while introducing alkyl substituents to the amine moiety causes bathochromic shifts in absorption and emission peaks of 30 – 40 nm and 10 – 60 nm, respectively.
Experimental part. Absorption and emission wavelengths were computed by the standard algorithm based on the ground state geometry optimization (equilibrium solvation), vertical excitation with nonequilibrium solvation, and the TD-DFT geometry optimization of the excited state structures. A reliable hybrid B3LYP functional was used in combination with DZ and TZ-quality basis sets.
Conclusions. The computed absorption wavelengths are in excellent agreement with the experimental data and are only slightly solvent-dependent. At the same time, the discrepancy with the experiment for Stokes shifts reaches about 20 % at IEF-PCM-TD-B3LYP/6-31G(d). However, the general tendency for both absorption and fluorescence wavelengths is identical for all solvents within one molecule.
Received: 24.12.2019
Revised: 31.01.2020
Accepted: 27.02.2020
Supporting Agency
- the budget theme of the Ministry of Education and Science of Ukraine No. 0117U003854
Downloads
References
- Barja, B. C.; Chesta, C.; Atvars, T. D. Z.; Aramendía, P. F. Relaxations in Poly(vinyl alcohol) and in Poly(vinyl acetate) Detected by Fluorescence Emission of 4-Aminophthalimide and Prodan. J. Phys. Chem. B 2005, 109 (33), 16180-16187. https://doi.org/10.1021/jp050844a.
- Benčić, P.; Mandić, L.; Džeba, I.; Tartaro Bujak, I.; Biczók, L.; Mihaljević, B.; Mlinarić-Majerski, K.; Weber, I.; Kralj, M.; Basarić, N. Application of 4-amino-N-adamantylphthalimide solvatochromic dye for fluorescence microscopy in selective visualization of lipid droplets and mitochondria. Sens. Actuators, B 2019, 286, 52-61. https://doi.org/10.1016/j.snb.2019.01.102.
- Bhattacharyya, K. Nature of biological water: a femtosecond study. Chem. Commun. 2008, (25), 2848-2857. https://doi.org/10.1039/B800278A.
- Saroja, G.; Soujanya, T.; Ramachandram, B.; Samanta, A. 4-Aminophthalimide Derivatives as Environment-Sensitive Probes. J. Fluoresc. 1998, 8 (4), 405-410. https://doi.org/10.1023/A:1020536918438.
- Kindahl, T.; Chorell, E. Efficient one-step synthesis of 4-amino substituted phthalimides and evaluation of their potential as fluorescent probes. Org. Biomol. Chem. 2014, 12 (25), 4461-4470. https://doi.org/10.1039/C4OB00342J.
- Das, S.; Datta, A.; Bhattacharyya, K. Deuterium Isotope Effect on 4-Aminophthalimide in Neat Water and Reverse Micelles. J. Phys. Chem. A 1997, 101 (18), 3299-3304. https://doi.org/10.1021/jp963054x.
- Sueishi, Y.; Matsumoto, Y.; Sohama, J.; Osawa, Y.; Okamoto, H. Distinctive effects on fluorescence quantum yields of 4-substituted N-methylphthalimides by inclusion complexation with β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2019, 93 (3), 275-281. https://doi.org/10.1007/s10847-018-00877-4.
- Datta, A.; Das, S.; Mandal, D.; Pal, S. K.; Bhattacharyya, K. Fluorescence Monitoring of Polyacrylamide Hydrogel Using 4-Aminophthalimide. Langmuir 1997, 13 (26), 6922-6926. https://doi.org/10.1021/la970414e.
- Saroja, G.; Samanta, A. Hydrophobicity-induced aggregation of N-alkyl-4-aminophthalimides in aqueous media probed by solvatochromic fluorescence. J. Chem. Soc., Faraday Trans. 1998, 94 (20), 3141-3145. https://doi.org/10.1039/A804631J.
- Maciejewski, A.; Kubicki, J.; Dobek, K. The Origin of Time-Resolved Emission Spectra (TRES) Changes of 4-Aminophthalimide (4-AP) in SDS Micelles. The Role of the Hydrogen Bond between 4-AP and Water Present in Micelles. J. Phys. Chem. B 2003, 107 (50), 13986-13999. https://doi.org/10.1021/jp036340z.
- Weinberger, M.; Berndt, F.; Mahrwald, R.; Ernsting, N. P.; Wagenknecht, H.-A. Synthesis of 4-Aminophthalimide and 2,4-Diaminopyrimidine C-Nucleosides as Isosteric Fluorescent DNA Base Substitutes. J. Org. Chem. 2013, 78 (6), 2589-2599. https://doi.org/10.1021/jo302768f.
- Majhi, D.; Das, S. K.; Sahu, P. K.; Pratik, S. M.; Kumar, A.; Sarkar, M. Probing the aggregation behavior of 4-aminophthalimide and 4-(N,N-dimethyl) amino-N-methylphthalimide: a combined photophysical, crystallographic, microscopic and theoretical (DFT) study. Phys. Chem. Chem. Phys. 2014, 16 (34), 18349-18359. https://doi.org/10.1039/C4CP01912A.
- Wang, R.; Hao, C.; Li, P.; Wei, N.-N.; Chen, J.; Qiu, J. Time-dependent density functional theory study on the electronic excited-state hydrogen-bonding dynamics of 4-aminophthalimide (4AP) in aqueous solution: 4AP and 4AP–(H2O)1,2 clusters. J. Comput. Chem. 2010, 31 (11), 2157-2163. https://doi.org/10.1002/jcc.21504.
- Yang, D.; Zhang, Y. Modulation of the 4-aminophthalimide spectral properties by hydrogen bonds in water. Spectrochim. Acta, Part A 2014, 131, 214-224. https://doi.org/10.1016/j.saa.2014.04.086.
- Kim, T. G.; Wolford, M. F.; Topp, M. R. Ultrashort-lived excited states of aminophthalimides in fluid solution. Photochem. Photobiol. Sci. 2003, 2 (5), 576-584. https://doi.org/10.1039/B300493G.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford CT, 2013.
- Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652. https://doi.org/10.1063/1.464913.
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256 (4), 454-464. https://doi.org/10.1016/0009-2614(96)00440-X.
- Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109 (19), 8218-8224. https://doi.org/10.1063/1.477483.
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105 (8), 2999-3094. https://doi.org/ 10.1021/cr9904009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).