Phosphorylated calix[4,8]arenes improve the RP HPLC separation of benzene derivatives

Authors

  • Olga I. Kalchenko Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine
  • Myroslav O. Vysotsky Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine
  • Serhii O. Cherenok Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/202706

Keywords:

calixarenes, benzene derivatives, inclusion complexes, stability constants, separation selectivity, RP HPLC, molecular modelling

Abstract

Aim. To study the effect of 5,11,17,23-tetrakis(diisopropoxyphosphonyl)-25,26,27,28-tetrapropoxycalix[4]arene and oсtаkis(diethoxyphosphoryloxy)-tert-butylcalix[8]аrene additives to the MeCN – H2O mobile phase (86:14) on the selectivity of the separation of aromatic compounds by the reversed-phase high performance liquid chromatography (RP HPLC) using a Separon SGX C18 support.

Results and discussion. The process of complexation of phosphorylated calix[4,8]arenes with benzene derivatives in the mobile phase plays a key role in the RP HPLC separation of analytes. The stability constants of the inclusion complexes and the chromatographic separation coefficients of the analytes depend on the nature of the aromatic compounds and the cavity size of the calixarene macrocycle.

Experimental part. The HPLC analysis was performed in acetonitrile – water (86:14) solution using a Separon SGX C18 column. The stability constants of the calixarene complexes were determined using the dependence of 1/k’ chromatographic parameters of benzene derivatives on the calixarene concentration in the mobile phase. Molecular modelling of the calixarene complexes was carried out using a Hyper Chem 8.0 program.

Conclusions. The phosphorus-contained calixarenes due to their ability to form supramolecular complexes with aromatic molecules can be used as additives to the RP HPLC mobile phase and improve separation of benzene derivatives.

Received: 14.05.2020

Revised: 24.06.2020

Accepted: 27.08.2020

Supporting Agencies

  • National Academy of Sciences of Ukraine project “Functionalized calixarenes for recognition
  • binding and transport of biomolecules” (the state registration No. 0108U003174)

Downloads

Download data is not yet available.

References

  1. Gutsche, C. D. Calixarenes: An introduction, 2 Ed.; Royal Society of Chemistry: Cambridge, 2008. https://doi.org/10.1039/9781847558190.
  2. Asfari, Z.; Bohmer, V.; Harrowfield, J.; Vicens, J., Eds. Calixarenes 2001; Kluwer Academic Publishers: Dordrecht, 2001. https://doi.org/10.1007/0-306-47522-7.
  3. Böhmer, V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem., Int. Ed. Engl. 1995, 34 (7), 713 – 745. https://doi.org/10.1002/anie.199507131.
  4. Kalchenko, O. I.; Kalchenko, V. I. Chromatography in the chemistry of calixarenes; Naukowa dumka: Kyiv, 2013.
  5. Kalchenko, O.; Lipkowski, J.; Kalchenko, V. Chromatography in supramolecular and analytical chemistry of calixarenes. Compr. Supramol. Chem. II, 2017, 239 – 261. https://doi.org/10.1016/B978-0-12-409547-2.13799-0.
  6. Mandolini, L.; Ungaro, R., Eds. Calixarenes in action; Imperial College Press: Singapore, 2000. https://doi.org/10.1142/p168.
  7. Cerenok, S.; Dutasta, J.-P.; Kalchenko, V. Phosphorus-containing chiral macrocycles. Curr. Org. Chem. 2006, 10 (18), 2307 – 2331. http://dx.doi.org/10.2174/138527206778992725.
  8. Kalchenko, O.; Poznański, J.; Marcinowicz, A.; Cherenok, S.; Solovyov, A.; Zielenkiewicz, W.; Kalchenko, V. Complexation of tetrapropoxycalix[4]-arene with uracil and adenine derivatives in water-containing solution. J. Phys. Org. Chem. 2003, 16 (4), 246 – 252. https://doi.org/10.1002/poc.595.
  9. Lugovskoy, E. V.; Gritsenko, P. G.; Koshel, T. A.; Koliesnik, I. O.; Cherenok, S. O.; Kalchenko, O. I.; Kalchenko, V. I.; Komisarenko, S. V. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J. 2011, 278 (8), 1244 – 1251. https://doi.org/10.1111/j.1742-4658.2011.08045.x.
  10. Glennon, J. D.; Horne, E.; Hall, K.; Cocker, D.; Kuhn, A.; Harris, S. J.; McKervey, M. A. Silica-bonded calixarenes in chromatography: II. Chromatographic retention of metal ions and amino acid ester hydrochlorides. J. Chromatogr. A 1996, 731 (1), 47 – 55. https://doi.org/10.1016/0021-9673(95)01080-7.
  11. Sokoließ, T.; Schönherr, J.; Menyes, U.; Roth, U.; Jira, T. Characterization of calixarene- and resorcinarene-bonded stationary phases: I. Hydrophobic interactions. J. Chromatogr. A 2003, 1021 (1), 71 – 82. https://doi.org/10.1016/j.chroma.2003.09.014.
  12. Sokoließ, T.; Menyes, U.; Roth, U.; Jira, T. Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene-bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 2002, 948 (1), 309 – 319. https://doi.org/10.1016/S0021-9673(01)01317-6.
  13. Śliwka-Kaszyńska, M. Calixarenes as stationary phases in high performance liquid chromatography. Crit. Rev. Anal. Chem. 2007, 37 (3), 211 – 224. https://doi.org/10.1080/10408340701244672.
  14. Schneider, C.; Menyes, U.; Jira, T. Characterization of calixarene-bonded stationary phases. J. Sep. Sci. 2010, 33 (19), 2930 – 2942. https://doi.org/10.1002/jssc.201000281.
  15. Hashem, H.; Ibrahim, A. E.; Elhenawee, M. Chromatographic analysis of some drugs employed in erectile dysfunction therapy: Qualitative and quantitative studies using calixarene stationary phase. J. Sep. Sci. 2014, 37 (20), 2814 – 2824. https://doi.org/10.1002/jssc.201400276.
  16. Hashem, H. Chromatographic application on a calixarene stationary phase: A novel HPLC determination of flumethasone pivalate and salicylic acid in their binary mixture and ointment dosage form after two steps extraction. UK J. Pharm. Biosci. 2016, 4 (2), 70 – 76.
  17. Kalchenko, O. I.; Cherenok, S. O.; Solovyov, A. V.; Kalchenko, V. I. Influence of calixarenes on chromatographic separation of benzene or uracil derivatives. Chromatographia 2009, 70 (5), 717 – 721. https://doi.org/10.1365/s10337-009-1229-2.
  18. Solovyov, A. V.; Cherenok, S. O.; Kalchenko, O. I.; Atamas, L. I.; Kazantseva, Z. I.; Koshets, I. A.; Tsymbal, I. F.; Kalchenko, V. I. Synthesis and complexation of amphiphilic calix[4]arene phosphonates with organic molecules in solutions and Langmuir – Blodgett films. J. Mol. Liq. 2011, 159 (2), 117 – 123. https://doi.org/10.1016/j.molliq.2010.12.007.
  19. Kalchenko, O. I.; Lipkowski, J.; Kalchenko, V. I.; Vysotsky, M. A.; Markovsky, L. N. Effect of octakis(diethoxyphosphoryloxy)-tert-butyl-calix[8]arene in mobile phase on the reversed-phase retention behavior of aromatic compounds: host – guest complex formation and stability constants determination. J. Chromatogr. Sci. 1998, 36 (5), 269 – 273. https://doi.org/10.1093/chromsci/36.5.269.
  20. HYPERCUBE, Inc. Product evaluation. http://www.hyper.com/Download/AllDownloads/tabid/470/Default.aspx (accessed Aug 1, 2020).

Downloads

Published

2020-09-18

How to Cite

(1)
Kalchenko, O. I.; Vysotsky, M. O.; Cherenok, S. O. Phosphorylated calix[4,8]arenes Improve the RP HPLC Separation of Benzene Derivatives. J. Org. Pharm. Chem. 2020, 18, 43-48.

Issue

Section

Original Researches