Kinetic parameters of ionizing power of solvents. The nature of solvation effects in heterolysis of 2-aryl-2-chloroadamantanes

Authors

DOI:

https://doi.org/10.24959/ophcj.20.206314

Keywords:

heterolysis, solvation effects, tertiary substrates, kinetic parameters, solvent ionizing ability, solvent nucleophilicity, solvolysis, correlation analysis

Abstract

Aim. To find out the possibility of using tertiary substrates as benchmarks for determining the kinetic parameters of the ionizing ability of solvents Y.

Results and discussion. The rate of heterolysis of tertiary substrates, especially adamantyl derivatives, is highly dependent on the effect of nucleophilic solvation. This effect increases with increasing spatial complications. The use of 2-aryl-2-halogenadamantanes as reference points is impractical because the conjugation of the positive charge with the phenyl strongly depends on the nature of the solvent. The least sensitive to the effects of specific solvation is tBuCl. Unlike tertiary compounds, the heterolysis rate of secondary ones does not depend on the nucleophilicity of the solvent.

Experimental part. The kinetic data of tertiary substrates obtained by different methods (conductometric, chromatographic, verdazyl) were generalized using correlation analysis.

Conclusions. Tertiary substrates are unsuitable as benchmarks for determining the ionizing ability of solvents due to the negative effect of nucleophilic solvation. Secondary substrates are less sensitive to the effects of specific solvation. The rate of heterolysis of secondary substrates is described by the parameters of polarity f(ɛ) and electrophilicity E or solvatochromic parameters of the ionizing capacity of the solvent Z(ЕТ).

Received: 25.06.2020

Revised: 15.07.2020

Accepted: 27.08.2020

Supporting Agency

  • NASU theme «The study of heterolysis reaction kinetic of industrial halogen detivatives» (state registration No. 0112U002924)

Downloads

Download data is not yet available.

References

  1. Bentley, T. W.; von R. Schleyer, P. Medium Effects on the Rates and Mechanisms of Solvolytic Reactions. In Adv. Phys. Org. Chem.; Gold, V., Ed.; Academic Press: 1977; Vol. 14, pp 1 – 67.
  2. Dvorko, G. F.; Ponomareva, E. A.; Ponomarev, N. E.; Zaliznyi, V. V.; Koshchii, I. V. Nature of solvation effects and mechanism of heterolysis of tert-alkyl halides. Russ. J. Gen. Chem. 2007, 77 (9), 1535 – 1558. https://doi.org/10.1134/S1070363207090095.
  3. Katritzky, A. R.; Fara, D. C.; Yang, H.; Tämm, K.; Tamm, T.; Karelson, M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004, 104 (1), 175 – 198. https://doi.org/10.1021/cr020750m.
  4. Bentley, T. W.; Llewellyn, G. YX Scales of Solvent Ionizing Power. In Progress in Physical Organic Chemistry; Taft, R. W., Ed.; John Wiley & Sons: 1990; Vol. 17, pp 121 – 158.
  5. Richard, J. P.; Toteva, M. M.; Amyes, T. L. What Is the Stabilizing Interaction with Nucleophilic Solvents in the Transition State for Solvolysis of Tertiary Derivatives: Nucleophilic Solvent Participation or Nucleophilic Solvation? Org. Lett. 2001, 3 (14), 2225 – 2228. https://doi.org/10.1021/ol016103j.
  6. Denegri, B.; Streiter, A.; Jurić, S.; Ofial, A. R.; Kronja, O.; Mayr, H. Kinetics of the Solvolyses of Benzhydryl Derivatives: Basis for the Construction of a Comprehensive Nucleofugality Scale. Chem. Eur. J. 2006, 12 (6), 1648 – 1656. https://doi.org/10.1002/chem.200500845.
  7. Liu, K.-T.; Hou, I.-J. Application of Grunwald – Winstein correlation analyses with YBnBr scales to the solvolysis of benzoyl bromides. Tetrahedron 2001, 57 (16), 3343 – 3347. https://doi.org/10.1016/S0040-4020(01)00204-6.
  8. Bentley, T. W.; Garley, M. S. Correlations and predictions of solvent effects on reactivity: some limitations of multi-parameter equations and comparisons with similarity models based on one solvent parameter. J. Phys. Org. Chem. 2006, 19 (6), 341 – 349. https://doi.org/10.1002/poc.1084.
  9. Denegri, B.; Streiter, A.; Jurić, S.; Ofial, A. R.; Kronja, O.; Mayr, H. Kinetics of the Solvolyses of Benzhydryl Derivatives: Basis for the Construction of a Comprehensive Nucleofugality Scale. Chem. Eur. J. 2006, 12 (6), 1648 – 1656. https://doi.org/10.1002/chem.200500845.
  10. Richard, J. P.; Amyes, T. L.; M. Toteva, M.; Tsuji, Y. Dynamics for the reactions of ion pair intermediates of solvolysis. In Adv. Phys. Org. Chem.; Richard, J. P., Ed.; Academic Press: 2004; Vol. 39, pp 1 – 26.
  11. Kevill, D. N.; Upadhyay, V. Solvolysis – decomposition of N-1-adamantyl-N-p-tolylcarbamoyl chloride in hydroxylic solvents. J. Phys. Org. Chem. 1997, 10 (8), 600 – 606. https://doi.org/10.1002/(sici)1099-1395(199708)10:8<600::aid-poc928>3.0.co;2-q.
  12. Mizue, F.; Mutsuo, G.; Kimito, F.; Takanori, Y.; Yoshihiro, S.; Kenichi, Y.; Yuho, T. Solvent Effects on the Solvolysis of Neophyl Tosylates. Bull. Chem. Soc. Jpn. 1992, 65 (1), 46 – 54. https://doi.org/10.1246/bcsj.65.46.
  13. Denegri, B.; Minegishi, S.; Kronja, O.; Mayr, H. SN1 Reactions with Inverse Rate Profiles. Angew. Chem., Int. Ed. 2004, 43 (17), 2302 – 2305. https://doi.org/10.1002/anie.200353468.
  14. Martins, F.; Leitão, R. E.; Moreira, L. Solvation effects in the heterolyses of 3-X-3-methylpentanes (X = Cl, Br, I). J. Phys. Org. Chem. 2004, 17 (11), 1061 – 1066. https://doi.org/10.1002/poc.816.
  15. Tsutomu, M.; Hiroshi, H.; Gaku, Y. Solvent Effects on the Rate of Heterolysis of t-Butyl Chloride, Bromide, Iodide, and 2,4-Dinitrophenolate. Bull. Chem. Soc. Jpn. 1994, 67 (3), 824 – 830. https://doi.org/10.1246/bcsj.67.824.
  16. Dvorko, G. F.; Ponomarev, M. E.; Ponomareva, E. A. Mechanisms of Covalent Bond Heterolysis: Novel Methods of Investigations, New Facts, and New Interpretations; Nova Science Publishers: NY, 2010.
  17. Dvorko, G. F.; Ponomarev, M. E.; Ponomareva, E. A. The Role of Nucleophilic Solvation in the Reactions of Unimolecular Heterolysis. Russ. J. Gen. Chem. 1999, 69, 1835.
  18. Dvorko, G. F.; Ponomareva, E. A.; Ponomarev, M. E. Role of nucleophilic solvation and the mechanism of covalent bond heterolysis. J. Phys. Org. Chem. 2004, 17 (10), 825 – 836. https://doi.org/10.1002/poc.757.
  19. Mayr, H.; Kempf, B.; Ofial, A. R. π-Nucleophilicity in Carbon−Carbon Bond-Forming Reactions. Acc. Chem. Res. 2003, 36 (1), 66 – 77. https://doi.org/10.1021/ar020094c.
  20. Dvorko, G. F.; Tarasenko, P. V.; Ponomareva, E. A.; Kulik, N. I. Kinetics and mechanism of monomolecular heterolysis of framework compounds. VII. Ionization of 1-adamantyl iodide in alcohols, nitrobenzene and benzonitrile. The nature of solvation effects in the heterolysis of adamantyl and tert-butyl derivatives. Negative effect of nucleophilic solvation. Russ. J. Org. Chem. 1989, 25, 922.
  21. Dvorko, G. F.; Ponomarʹova, E. O. The principle of DMA and the mechanism of heterolysis of covalent bond. Ukrainian Chemistry Journal 1993, 59 (11), 1190.
  22. Gajewski, J. J. Is the tert-Butyl Chloride Solvolysis the Most Misunderstood Reaction in Organic Chemistry? Evidence Against Nucleophilic Solvent Participation in the tert-Butyl Chloride Transition State and for Increased Hydrogen Bond Donation to the 1-Adamantyl Chloride Solvolysis Transition State. J. Am. Chem. Soc. 2001, 123 (44), 10877 – 10883. https://doi.org/10.1021/ja010600d.
  23. McManus, S. P.; Somani, S.; Harris, J. M.; McGill, R. A. A Solvolysis Model for 2-Chloro-2-methyladamantane Based on the Linear Solvation Energy Approach. J. Org. Chem. 2004, 69 (25), 8865 – 8873. https://doi.org/10.1021/jo049798l.
  24. Farcasiu, D.; Jaehme, J.; Ruechardt, C. Relative reactivity of bridgehead adamantyl and homoadamantyl substrates from solvolyses with heptafluorobutyrate as a highly reactive carboxylate leaving group. Absence of SN2 character of solvolysis of tert-butyl derivatives. J. Am. Chem. Soc. 1985, 107 (20), 5717 – 5722. https://doi.org/10.1021/ja00306a019.
  25. Ponomarev, N. E.; Stambirskii, M. V.; Dvorko, G. F.; Bazil’chuk, A. V. Kinetics and Mechanism of Monomolecular Heterolysis of Cage-Like Compounds: XVIII. Solvent Effect on the Rate of Heterolysis of 3-Bromocyclohexene. Correlation Analysis of Solvation Effects. Russ. J. Org. Chem. 2004, 40 (4), 489 – 496. https://doi.org/10.1023/B:RUJO.0000036068.58478.e4.
  26. Koppel, I. A.; Palm, V. A. The Influence of the Solvent on Organic Reactivity. In Advanced in Linear Free Energy Relationships; Chapman, N. B., Ed.; Plenum: New York, 1972; pp 203 – 280.
  27. Katritzky, A. R.; Brycki, B. E. The mechanisms of nucleophilic substitution in aliphatic compounds. Chem. Soc. Rev. 1990, 19 (2), 83 – 105. https://doi.org/10.1039/CS9901900083.
  28. Bentley, T. W.; Carter, G. E.; Roberts, K. Solvent ionizing power – comparisons of solvolyses of 1-adamantyl chlorides, bromides, iodides, and tosylates in protic solvents. J. Org. Chem. 1984, 49 (26), 5183 – 5189. https://doi.org/10.1021/jo00200a034.
  29. Takeuchi, K. I.; Takasuka, M.; Shiba, E.; Kinoshita, T.; Okazaki, T.; Abboud, J.-L. M.; Notario, R.; Castaño, O. Experimental and Theoretical Evaluation of Energetics for Nucleophilic Solvent Participation in the Solvolysis of Tertiary Alkyl Chlorides on the Basis of Gas Phase Bridgehead Carbocation Stabilities. J. Am. Chem. Soc. 2000, 122 (30), 7351 – 7357. https://doi.org/10.1021/ja0004635.
  30. Takeuchi, K.; Ohga, Y.; Ushino, T.; Takasuka, M. Structural effects of the Grunwald – Winstein correlations in the solvolysis of some simple tertiary alkyl chlorides. J. Phys. Org. Chem. 1997, 10 (10), 717 – 724. https://doi.org/10.1002/(sici)1099-1395(199710)10:10<717::aid-poc941>3.0.co;2-y.
  31. Fawcett, W.; Krygowski, T. A complementary Lewis acid-base description of solvent effects. II. Dipole-dipole interactions. Aust. J. Chem. 1975, 28 (10), 2115 – 2124. https://doi.org/10.1071/CH9752115.
  32. Ponomarev, N. E.; Zaliznyi, V. V.; Dvorko, G. F. Kinetics and mechanism of monomolecular heterolysis of commercial organohalogen compounds: XLIII. Solvent effect on activation parameters of dehydrochlorination of 3-chloro-3-methylbut-1-ene. Correlation analysis of solvation effects. Russ. J. Gen. Chem. 2007, 77 (7), 1204 – 1214. https://doi.org/10.1134/S1070363207070110.
  33. Dvorko, G. F.; Vasil’kevich, A. I.; Ponomarev, N. Ye. Correlation analysis of solvation effects in the heterolysis of p-methoxineophyltosylate. Russ. J. Org. Chem. 1997, 33, 245.
  34. Dvorko, G. F.; Pervishko, T. L.; Golovko, N. N.; Vasil’kevich, A. I.; Ponomareva, E. A. Kinetics and mechanism of monomolecular heterolysis of adamantane derivatives. XIII. Comparative analysis of solvation effects in the ionization of 1-adamantyltosylate and diphenylbromethane. Russ. J. Org. Chem. 1993, 29, 1805.
  35. Vasil’kevich, A. I.; Ponomareva, E. A.; Dvorko, G. F. Kinetics and mechanism of monomolecular heterolysis of framework compounds. XI. Correlation analysis of solvation effects in the dehydrobromination reaction of 2-bromo-2-methyladamantane. Russ. J. Org. Chem. 1990, 26, 2267.
  36. Dvorko, G. F.; Yevtushenko, N. Yu.; Ponomareva, E. A. Determination of the nucleophilic effect of a solvent in solvolysis reactions. Org. React. (Tartu) 1985, 22 (3), 451.
  37. Vasil’kevich, A. I.; Ponomareva, E. A.; Dvorko, G. F. Kinetics and Mechanism of Unimolecular Heterolysis of Framework Compounds: XVII. Solvation Effects in Dehydrobromination of tert-Butyl Bromide, 1-Bromo-1-Methylcyclohexane, and 2-Bromo-2-methyladamantane in Dipolar Aprotic Solvents. Russ. J. Org. Chem. 2005, 41 (11), 1594 – 1597. https://doi.org/10.1007/s11178-006-0003-2.
  38. Ponomarev, N. E.; Michkov, K. V.; Dvorko, G. F. Specific Features of Solvation Effects in Monomolecular and Bimolecular Solvolysis. Russ. J. Gen. Chem. 2001, 71 (4), 591 – 598. https://doi.org/10.1023/A:1012391403905.
  39. Dvorko, G. F.; Koshchii, I. V.; Ponomareva, E. A. Kinetics and mechanism of unimolecular heterolysis of cage-like compounds: XIX. Effect of the nucleofuge nature on the activation parameters of heterolysis of 1-halo-1-methylcyclohexanes in cyclohexane. Heterolysis rate ratio in aprotic and protic solvents. Russ. J. Org. Chem. 2007, 43 (1), 50 – 55. https://doi.org/10.1134/S1070428007010046.
  40. Dvorko, G. F.; Ponomar’ov, M. Ye.; Ponomareva, E. A. Universal minimum rate of monomolecular heterolysis reactions. Reports of the National Academy of Sciences of Ukraine 2009, 11, 141.
  41. Dvorko, G. F.; Ponomareva, E. A.; Ponomarev, M. E.; Stambirsky, M. V. Nature of Salt Effects and Mechanism of Covalent Bond Heterolysis. Progress in Reaction Kinetics and Mechanism 2007, 32 (2), 73 – 118. https://doi.org/10.3184/146867807x227471.
  42. Dvorko, G. F.; Ponomareva, E. A. Effect of nucleophilic solvent on the kinetic parameters of the reactions of unimolecular heterolysis. Mechanism of the covalent bond heterolysis. Russ. J. Gen. Chem. 2010, 80 (8), 1615 – 1625. https://doi.org/10.1134/S1070363210080128.
  43. Dvorko, G. F.; Ponomarev, N. E.; Ponomareva, E. A. Isokinetic relationships in unimolecular heterolysis. Mechanism of ionization of covalent bond. Russ. J. Gen. Chem. 2010, 80 (1), 1 – 14. https://doi.org/10.1134/S1070363210010019.
  44. Toteva, M. M.; Richard, J. P. Mechanism for Nucleophilic Substitution and Elimination Reactions at Tertiary Carbon in Largely Aqueous Solutions: Lifetime of a Simple Tertiary Carbocation. J. Am. Chem. Soc. 1996, 118 (46), 11434 – 11445. https://doi.org/10.1021/ja9617451.
  45. Zilian U. Solvent Polarity – A Fundamental Examination Chem. Zeit., 1984, 108, 381.
  46. Anteunis, M.; Peeters, H. L. Solvolysis in dipolar aprotic media. I. Production of water-extractable bromide vs. olefin distribution in the course of the solvolysis of 2-bromo-2-methylpentane in dimethylformamide. J. Org. Chem. 1975, 40 (3), 307 – 311. https://doi.org/10.1021/jo00891a009.
  47. Tsuji, Y.; Richard, J. P. Reactions of ion-pair intermediates of solvolysis. Chem. Rec. 2005, 5 (2), 94 – 106. https://doi.org/10.1002/tcr.20038.
  48. Tsuji, Y.; Mori, T.; Toteva, M. M.; Richard, J. P. Dynamics of reaction of ion pairs in aqueous solution: racemization of the chiral ion pair intermediate of solvolysis of (S)-1-(4-methylphenyl)ethylpentafluorobenzoate. J. Phys. Org. Chem. 2003, 16 (8), 484 – 490. https://doi.org/10.1002/poc.611.
  49. Song, B. D.; Jencks, W. P. Mechanism of solvolysis of substituted benzoyl halides. J. Am. Chem. Soc. 1989, 111 (22), 8470 – 8479. https://doi.org/10.1021/ja00204a021.
  50. Okamoto, K. Solvent molecules and carbocation intermediates in solvolyses. Pure Appl. Chem. 1984, 56 (12), 1797. https://doi.org/10.1351/pac198456121797.
  51. Dvorko, G. F.; Zaliznyi, V. V.; Ponomarev, N. E. Kinetics and Mechanism of Monomolecular Heterolysis of Commercial Organohalogen Compounds: XXIX. Solvent Effects on the Activation Parameters of Heterolysis of tert-Butyl Chloride. Russ. J. Gen. Chem. 2002, 72 (9), 1414 – 1428. https://doi.org/10.1023/A:1021630030055.
  52. Fainberg, A. H.; Winstein, S. Correlation of Solvolysis Rates. VII. Neophyl Chloride and Bromide1. J. Am. Chem. Soc. 1957, 79 (7), 1608 – 1612. https://doi.org/10.1021/ja01564a023.
  53. Streitwieser, A. Solvolytic Displacement Reactions; McGraw-Hill: New York, 1962.
  54. Dvorko, G. F.; Ponomareva, E. A.; Yavorskaya, I. F.; Yurchenko, A. G. Kinetics and mechanism of monomolecular heterolysis of framework compounds. X. Salt effects in the heterolysis of 1-adamantyltosylate in γ-butyrolactone, propylene carbonate and acetonitrile. Comparative analysis of salt and solvation effects in the heterolysis of nodal derivatives of adamantane. Russ. J. Org. Chem. 1990, 26, 598.
  55. Dvorko, G. F.; Pervishko, T. L.; Leunov, D. I.; Ponomareva, E. A. Kinetics and Mechanism of Monomolecular Heterolysis of Carcass Compounds. XIV. Negative Salt Effect of LiClO4 on Heterolysis of 1-Iodoadamantane in γ-Butyrolactone. Russ. J. Org. Chem. 1997, 33, 565.
  56. Ponomareva, E. A.; Yavorskaya, I. F.; Dvorko, G. F. Kinetics and the mechanism of monomolecular heterolysis of frame compounds. VIII. Ionization of 1-adamantyl picrate in dipolar aprotic solvents. Salt and solvation effects. The limiting and product-forming stages. Russ. J. Org. Chem. 1990, 26, 578.
  57. Dvorko, G. F.; Ponomareva, E. A.; Tarasenko, P. V.; Kulik, N. I.; Vasil’kevich, A. I. Kinetics and mechanism of monomolecular heterolysis of framework compounds. ІІІ. The nature of solvation effects in the heterolysis of 1-adamantyl iodide and 1-adamantyl bromide. Russ. J. Org. Chem. 1985, 21, 1608.
  58. Dvorko, G. F.; Pervishko, T. L.; Leunov, D. I.; Ponomareva, E. A. Kinetics and mechanism of monomolecular heterolysis of cage compounds. XVI. Correlation analysis of solvating effects during heterolysis of 1-iodamantane. Russ. J. Org. Chem. 1999, 35, 1643.
  59. Liu, K.-T. Nucleophilic Solvent Intervention in Benzylic Solvolyses. The Use of YBnx Scales in Grunwald-Winstein Type Correlation Analysis. J. Chin. Chem. Soc. 1995, 42 (4), 607 – 615. https://doi.org/10.1002/jccs.199500082.
  60. Liu, K.-T.; Sheu, H.-C. Correlation of Solvolytic Reactivities. A New YBnBr Scale for Benzylic Bromides. J. Chin. Chem. Soc. 1991, 38 (1), 29 – 33. https://doi.org/10.1002/jccs.199100005.
  61. Liu, K. T.; Sheu, H. C. Solvolysis of 2-aryl-2-chloroadamantanes. A new Y scale for benzylic chlorides. J. Org. Chem. 1991, 56 (9), 3021 – 3025. https://doi.org/10.1021/jo00009a018.
  62. Dvorko, G. F.; Vasil’kevich, A. I.; Mikhal’chuk, K. V.; Koshchii, I. V. Kinetics and mechanism of unimolecular heterolysis of framework compounds: XX. Solvation and steric effects in heterolysis of 2-halo-2-alkyladamantanes in sulfolane and butanol. Russ. J. Org. Chem. 2007, 43 (2), 188 – 191. https://doi.org/10.1134/S1070428007020066.
  63. Dvorko, G. F.; Vasil’kevich, A. I.; Koshchii, I. V.; Mikhal’chuk, K. V. Kinetics and mechanism of unimolecular heterolysis of cage-like compounds: XXI. Solvent effect on the realtive rate of heterolysis of 2-methyland 2-phenyl-2-haloadamantanes. Role of activation parameters. Russ. J. Org. Chem. 2009, 45 (9), 1336. https://doi.org/10.1134/S107042800909005X.

Published

2020-09-18

How to Cite

(1)
Vasylkevych, O. I.; Koshchii, I. I.; Dvorko, G. F. Kinetic Parameters of Ionizing Power of Solvents. The Nature of Solvation Effects in Heterolysis of 2-Aryl-2-Chloroadamantanes. J. Org. Pharm. Chem. 2020, 18, 25-34.

Issue

Section

Original Researches