The Synthesis of Pyrroles from Nitroolefins

Authors

DOI:

https://doi.org/10.24959/ophcj.25.323775

Keywords:

pyrrole, Grob–Camenisch reaction, nitroolefines

Abstract

The synthesis of pyrroles occupies a key place in synthetic organic chemistry due to the numerous biological properties of pyrrole derivatives, in particular antimicrobial, antibacterial, antifungal, antimalarial, anticancer activities, etc. Therefore, pyrroles serve as building blocks in the creation of potential pharmaceuticals and also serve as the basis for the synthesis of boradipyrromethene dyes. One of the most well-known approaches to the synthesis of pyrroles is the reaction between nitroolefins, 1,3-dicarbonyl compounds, and amines, also known as the Grob-Camenisch reaction. This review is devoted to the historical chronology from the discovery of this transformation dating back to 1950s to the present, and covers the development of various modifications of the above reaction in the synthesis of pyrroles.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Novozhilov, Y. V.; Dorogov, M. V.; Blumina, M. V.; Smirnov, A. V.; Krasavin, M. An Improved Kilogram-Scale Preparation of Atorvastatin Calcium. Chem. Cent. J. 2015, 9 (1). https://doi.org/10.1186/s13065-015-0082-7.
    | |
  2. Artico, M.; Corelli, F.; Massa, S.; Stefancich, G. Non-steroidal antiinflammatory agents. A novel synthesis of 1-methyl-5-p-tolylpyrrole-2-acetic acid (tolmetin). J. Het. Chem. 1982, 19 (6), 1493–1495. https://doi.org/10.1002/jhet.5570190647.
    |
  3. Müller, P.; Polleux, Ph. Synthesis of a Ketorolac Model via Aromatic Carbenoid Insertion. Helv. Chim. Acta. 1998, 81 (2), 317-323. https://doi.org/10.1002/hlca.19980810212.
    |
  4. Ulrich, G.; Ziessel, R.; Harriman, A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed. 2008, 47 (7) 1184–1201. https://doi.org/10.1002/anie.200702070.
    | |
  5. Hantzsch, A. Neue Bildungsweise von Pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1890, 23 (1), 1474–1476. https://doi.org/10.1002/cber.189002301243.
  6. Knorr, L. Synthese von Pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1884, 17 (2), 1635–1642. https://doi.org/10.1002/cber.18840170220.
  7. Paal, C. Synthese von Thiophen‐ und Pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1885, 18 (1), 367–371. https://doi.org/10.1002/cber.18850180175.
  8. Katritzky, A. R.; Jiang, J.; Steel, P. J. 1-Aza-1,3-bis(triphenylphosphoranylidene)propane: A Novel :CHCH2N: Synthon. J. Org. Chem. 1994, 59, 4551. https://doi.org/10.1021/jo00095a034.
    |
  9. Plaskon, A. S.; Ryabukhin, S. V.; Volochnyuk, D. M.; Shivanyuk, A. N.; Tolmachev, A. A. The Synthesis of 5-Hetaryl-3-(2-Hydroxybenzoyl)Pyrroles. Tetrahedron 2008, 64 (25), 5933–5943. https://doi.org/10.1016/j.tet.2008.04.041.
    |
  10. González-Olvera, R.; Vergara-Arenas, B. I.; Negrón-Silva, G. E.; Angeles-Beltrán, D.; Lomas-Romero, L.; Gutiérrez-Carrillo, A.; Lara, V. H.; Morales-Serna, J. A. Synthesis of β-Nitrostyrenes in the Presence of Sulfated Zirconia and Secondary Amines. RSC Adv. 2015, 5 (120), 99188–99192. https://doi.org/10.1039/c5ra17168g.
    |
  11. Stowe, G. N.; Janda, K. D. A Diels-Alder Reaction Conducted within the Parameters of Aqueous Organocatalysis: Still Just Smoke and Mirrors. Tetrahedron Lett. 2011, 52 (17), 2085–2087. https://doi.org/10.1016/j.tetlet.2010.10.134.
    | |
  12. Halimehjani, A. Z.; Namboothiri, I. N. N.; Hooshmand, S. E. Part I: Nitroalkenes in the Synthesis of Heterocyclic Compounds. RSC Adv. 2014, 4 (89) 48022–48084. https://doi.org/10.1039/c4ra08828j.
    |
  13. Grob, C. A.; Camenish, K. Eine neue Pyrrolring-Synthese, Helv. Chim. Acta. 1953, 36 (1), 49–58. https://doi.org/10.1002/hlca.19530360109.
  14. Meyer, H. Dihydropyridine, VI. Diimidomalonsäurederivate in der Hantzsch‐Pyridin‐Synthese. Liebigs Ann. Chem. 1981, 1981 (9). 1523-1533. https://doi.org/10.1002/jlac.198119810902.
  15. Yavari, I.; Ghazvini, M.; Aminkhani, A. Solvent-Free Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles from Enaminones and β-Nitrostyrenes. J. Chem. Res. 2011, 35 (10), 558–560. https://doi.org/10.3184/174751911X13164434098696.
    |
  16. Guan, Z. H.; Li, L.; Ren, Z. H.; Li, J.; Zhao, M. N. A Facile and Efficient Synthesis of Multisubstituted Pyrroles from Enaminoesters and Nitroolefins. Green Chem. 2011, 13 (7), 1664–1668. https://doi.org/10.1039/c1gc15278e.
    |
  17. Xu, H.; Li, Y.; Xing, M.; Jia, J.; Han, L.; Ye, Q.; Gao, J. Synthesis of Pyrroles from β-Enamines and Nitroolefins Catalyzed by I2 under High-Speed Vibration Milling (HSVM). Chem. Lett. 2015, 44 (4), 574–576. https://doi.org/10.1246/cl.141102.
    |
  18. Abdukader, A.; Xue, Q.; Lin, A.; Zhang, M.; Cheng, Y.; Zhu, C. Gold-Catalyzed Cascade C-C and C-N Bond Formation: Synthesis of Polysubstituted Indolequinones and Pyrroles. Tetrahedron Lett. 2013, 54 (44), 5898–5900. https://doi.org/10.1016/j.tetlet.2013.08.100.
    |
  19. Ponduri, R.; Kumar, P.; Vadali, L. R. PEG-400 Promoted a Simple, Efficient, and Recyclable Catalyst for the One-Pot Eco-Friendly Synthesis of Functionalized Isoxazole Substituted Pyrroles in Aqueous Medium. Synth. Commun. 2018, 48 (24), 3113–3122. https://doi.org/10.1080/00397911.2018.1535078.
    |
  20. Trautwein, A. W.; Jung, G. Solid-phase synthesis of pyrroles from enaminones and nitroalkenes. Tetrahedron Lett. 1998, 39, 8263–8266. https://doi.org/10.1016/S0040-4039(98)01887-5.
    |
  21. Akbaslar, D.; Giray, E. S.; Algul, O. Revisit to the Synthesis of 1,2,3,4-Tetrasubstituted Pyrrole Derivatives in Lactic Acid Media as a Green Solvent and Catalyst. Mol. Divers. 2021, 25 (4), 2321–2338. https://doi.org/10.1007/s11030-020-10122-1.
    | |
  22. Sarkar, S.; Bera, K.; Maiti, S.; Biswas, S.; Jana, U. Three-Component Coupling Synthesis of Diversely Substituted N-Aryl Pyrroles Catalyzed by Iron(III) Chloride. Synth. Commun. 2013, 43 (11), 1563–1570. https://doi.org/10.1080/00397911.2011.650273.
    |
  23. Sarkar, S.; Bera, K.; Jalal, S.; Jana, U. Synthesis of Structurally Diverse Polyfunctional Pyrrolo[1,2-a]Quinolines by Sequential Iron-Catalyzed Three-Component Coupling and Gold-Catalyzed Hydroarylation Reactions. Eur. J. Org. Chem. 2013, 27, 6055–6061. https://doi.org/10.1002/ejoc.201300659.
    |
  24. Jad, Y. E.; Gudimella, S. K.; Govender, T.; De La Torre, B. G.; Albericio, F. Solid-Phase Synthesis of Pyrrole Derivatives through a Multicomponent Reaction Involving Lys-Containing Peptides. ACS Comb. Sci. 2018, 20 (4), 187–191. https://doi.org/10.1021/acscombsci.8b00006.
    | |
  25. Rostami, H.; Shiri, L. Fe3O4@SiO2—CPTMS—Guanidine—SO3H-Catalyzed One-Pot Multicomponent Synthesis of Polysubstituted Pyrrole Derivatives under Solvent-Free Conditions. Russian J. Org. Chem. 2019, 55 (8), 1204–1211. https://doi.org/10.1134/S1070428019080207.
    |
  26. Silveira, C. C.; Mendes, S. R.; Martins, G. M.; Schlösser, S. C.; Kaufman, T. S. Modular CeCl3·7H2O-Catalyzed Multi-Component Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles under Microwave Irradiation and Their Further Trichloroisocyanuric Acid-Mediated Conversion into 5-Sulfenylpyrrole Derivatives. Tetrahedron 2013, 69 (43), 9076–9085. https://doi.org/10.1016/j.tet.2013.08.035.
    |
  27. Magar, D. R.; Ke, Y. J.; Chen, K. Three-Component Synthesis of Functionalized N-Protected Tetrasubstituted Pyrroles by an Addition-Elimination-Aromatization Process. Asian J. Org. Chem. 2013, 2 (4), 330–335. https://doi.org/10.1002/ajoc.201200193.
    |
  28. Li, L.; Chen, Q.; Xiong, X.; Zhang, C.; Qian, J.; Shi, J.; An, Q.; Zhang, M. Synthesis of Polysubstituted Pyrroles via a Gold(I)-Catalyzed Tandem Three-Component Reaction at Room Temperature. Chinese Chem. Lett. 2018, 29 (12), 1893–1896. https://doi.org/10.1016/j.cclet.2018.09.004.
    |
  29. Goyal, S.; Patel, J. K.; Gangar, M.; Kumar, K.; Nair, V. A. Zirconocene Dichloride Catalysed One-Pot Synthesis of Pyrroles through Nitroalkene-Enamine Assembly. RSC Adv. 2015, 5 (5), 3187–3195. https://doi.org/10.1039/c4ra09873k.
    |
  30. Jadhav, N. C.; Pahelkar, A. R.; Desai, N. V.; Telvekar, V. N. Design, Synthesis and Molecular Docking Study of Novel Pyrrole-Based α-Amylase and α-Glucosidase Inhibitors. Med. Chem. Res. 2017, 26 (10), 2675–2691. https://doi.org/10.1007/s00044-017-1965-z.
    |
  31. Jadhav, N. C.; Jagadhane, P. B.; Patile, H. V.; Telvekar, V. N. Three-Component Direct Synthesis of Substituted Pyrroles from Easily Accessible Chemical Moieties Using Hypervalent Iodine Reagent. Tetrahedron Lett. 2013, 54 (23), 3019–3021. https://doi.org/10.1016/j.tetlet.2013.04.014.
    |
  32. Pachechne, L. A.; Pereira, V. F.; Martins, G. M.; Martendal, E.; Xavier, F. R.; Mendes, S. R. One-Pot Multicomponent Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles Catalyzed by [NMPH]CH3SO3. Tetrahedron Lett. 2019, 60 (38), 151043. https://doi.org/10.1016/j.tetlet.2019.151043.
    |
  33. Maiti, S.; Biswas, S.; Jana, U. Iron(III)-Catalyzed Four-Component Coupling Reaction of 1,3-Dicarbonyl Compounds, Amines, Aldehydes, and Nitroalkanes: A Simple and Direct Synthesis of Functionalized Pyrroles. J. Org. Chem. 2010, 75 (5), 1674–1683. https://doi.org/10.1021/jo902661y.
    | |
  34. Reddy, G. R.; Reddy, T. R.; Joseph, S. C.; Reddy, K. S.; Reddy, L. S.; Kumar, P. M.; Krishna, G. R.; Reddy, C. M.; Rambabu, D.; Kapavarapu, R.; Lakshmi, C.; Meda, T.; Priya, K. K.; Parsa, K. V. L.; Pal, M. Pd-Mediated New Synthesis of Pyrroles: Their Evaluation as Potential Inhibitors of Phosphodiesterase 4. Chem. Commun. 2011, 47 (27), 7779–7781. https://doi.org/10.1039/c1cc12321a.
    | |
  35. Atar, A. B.; Jeong, Y. T. Heterogenized Tungsten Complex: An Efficient and High Yielding Catalyst for the Synthesis of Structurally Diverse Tetra Substituted Pyrrole Derivatives via Four-Component Assembly. Tetrahedron Lett. 2013, 54 (41), 5624–5628. https://doi.org/10.1016/j.tetlet.2013.08.016.
    |
  36. Saeidian, H.; Abdoli, M.; Salimi, R. One-Pot Synthesis of Highly Substituted Pyrroles Using Nano Copper Oxide as an Effective Heterogeneous Nanocatalyst. C. R. Chim. 2013, 16 (11), 1063–1070. https://doi.org/10.1016/j.crci.2013.02.008.
    |
  37. Meshkatalsadat, M. H.; Mahmoudi, A.; Lotfi, S.; Pouramiri, B.; Foroumadi, A. Green and Four-Component Cyclocondensation Synthesis and in Silico Docking of New Polyfunctionalized Pyrrole Derivatives as the Potential Anticholinesterase Agents. Mol. Div. 2022, 26 (6), 3021–3035. https://doi.org/10.1007/s11030-021-10362-9.
    | |
  38. Meshram, H. M.; Madhu Babu, B.; Santosh Kumar, G.; Thakur, P. B.; Bangade, V. M. Catalyst-Free Four-Component Protocol for the Synthesis of Substituted Pyrroles under Reusable Reaction Media. Tetrahedron Lett. 2013, 54 (19), 2296–2302. https://doi.org/10.1016/j.tetlet.2013.01.098.
    |
  39. Reddy, G. R.; Reddy, T. R.; Joseph, S. C.; Reddy, K. S.; Pal, M. Iodine Catalyzed Four-Component Reaction: A Straightforward One-Pot Synthesis of Functionalized Pyrroles under Metal-Free Conditions. RSC Adv. 2012, 2 (8), 3387–3395. https://doi.org/10.1039/c2ra00982j.
    |
  40. Bharate, J. B.; Sharma, R.; Aravinda, S.; Gupta, V. K.; Singh, B.; Bharate, S. B.; Vishwakarma, R. A. Montmorillonite Clay Catalyzed Synthesis of Functionalized Pyrroles through Domino Four-Component Coupling of Amines, Aldehydes, 1,3-Dicarbonyl Compounds and Nitroalkanes. RSC Adv. 2013, 3 (44), 21736–21742. https://doi.org/10.1039/c3ra43324b.
    |
  41. Khan, A. T.; Lal, M.; Ray Bagdi, P.; Sidick Basha, R.; Saravanan, P.; Patra, S. Synthesis of Tetra-Substituted Pyrroles, a Potential Phosphodiesterase 4B Inhibitor, through Nickel(II) Chloride Hexahydrate Catalyzed One-Pot Four-Component Reaction. Tetrahedron Let.t 2012, 53 (32), 4145–4150. https://doi.org/10.1016/j.tetlet.2012.05.133.
    |
  42. Li, B. Le; Li, P. H.; Fang, X. N.; Li, C. X.; Sun, J. L.; Mo, L. P.; Zhang, Z. H. One-Pot Four-Component Synthesis of Highly Substituted Pyrroles in Gluconic Acid Aqueous Solution. Tetrahedron 2013, 69 (34), 7011–7018. https://doi.org/10.1016/j.tet.2013.06.049.
    |
  43. Gómez-Sánchez, A.; Stiefel, B. M.; Fernbndez-Ferngndez, R.; Bellanato, J. Unusual Michael Reaction of Acyclic 1,S-Dicarbonyl Compounds with Nitro-Olefins. A Novel Pyrrole Synthesis. J. Chem. Soc., Perkin Trans., 1982, 1, 441-447. https://doi.org/10.1039/P19820000441.
  44. Yamamoto, S.; Matsunaga, N.; Hitaka, T.; Yamada, M.; Hara, T.; Miyazaki, J.; Santou, T.; Kusaka, M.; Yamaoka, M.; Kanzaki, N.; Furuya, S.; Tasaka, A.; Hamamura, K.; Ito, M. Design, Synthesis, and Biological Evaluation of 4-Phenylpyrrole Derivatives as Novel Androgen Receptor Antagonists. Bioorg. Med. Chem. 2012, 20 (1), 422–434. https://doi.org/10.1016/j.bmc.2011.10.067.
    | |
  45. Okamoto, M.; Kojima, H.; Saito, N.; Okabe, T.; Masuda, Y.; Furuya, T.; Nagano, T. Virtual Screening and Further Development of Novel ALK Inhibitors. Bioorg. Med. Chem. 2011, 19 (10), 3086–3095. https://doi.org/10.1016/j.bmc.2011.04.008.
    | |

Downloads

Published

2025-06-11

How to Cite

(1)
Hotynchan, A. H.; Kovtun, O. M.; Kovtun, Y. P. The Synthesis of Pyrroles from Nitroolefins. J. Org. Pharm. Chem. 2025, 23, 48-58.

Issue

Section

Review Articles