Catalytic Performance of Pd Deposited on Various Carriers in Hydrogenation of Quinoline

Authors

DOI:

https://doi.org/10.24959/ophcj.25.330039

Keywords:

hydrogenation, palladium, activated carbon, quinoline, specific surface

Abstract

Pd nanoparticles were deposited on two different grades of activated carbon – NORIT and CAW. In addition, these carbons were pre-treated with HNO3 or covered by polyaniline, and these modified carbons were used as carriers for the Pd deposition. The resulting materials were tested as catalysts for the hydrogenation of quinoline. The best-performing samples were further tested in the hydrogenation of 4-methylquinoline. The structural features of carriers and catalysts were elucidated by the N2 adsorption studies. The grade of activated carbon was found to be a key factor controlling its performance, and the effect of the surface modification was negligible.

Supporting Agency

  • The authors received no specific funding for this work.

Downloads

Download data is not yet available.

References

  1. Jackson, S. D. (Ed.). Hydrogenation: Catalysts and Processes; De Gruyter: Berlin, Boston, 2018.
  2. Stoffels, M. A.; Klauck, F. J. R.; Hamadi, T.; Glorius, F.; Leker, J. Technology Trends of Catalysts in Hydrogenation Reactions: A Patent Landscape Analysis. Adv. Synth. Catal. 2020, 362, 1258 - 1274. https://doi.org/10.1002/adsc.201901292.
    | |
  3. Zhao, X.; Chang, Y.; Chen, W.-J.; Wu, Q.; Pan, X.; Chen, K.; Weng, B. Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega 2022, 7, 17–31. https://doi.org/10.1021/acsomega.1c06244.
    | |
  4. Andrade, M. A.; Martins, L. M. D. R. S. Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions. Processes 2020, 8, 1172. https://doi.org/10.3390/pr8091172.
    |
  5. He, M.-Q.; Ai, Y.; Hu, W.; Guan, L.; Ding, M.; Liang, Q. Recent Advances of Seed-Mediated Growth of Metal Nanoparticles: From Growth to Applications. Adv. Mater. 2023, 35, 2211915. https://doi.org/10.1002/adma.202211915.
    | |
  6. Li, Y.; Xu, X.; Zhang, P.; Gong, Y.; Li, H.; Wang, Y. Highly Selective Pd@mpg-C₃N₄ Catalyst for Phenol Hydrogenation in Aqueous Phase. RSC Adv. 2013, 3, 10973 - 10982. https://doi.org/10.1039/C3RA41397G.
    |
  7. Gao, Y.; Chen, C.-A.; Gau, H.-M.; Bailey, J. A.; Akhadov, E.; Williams, D.; Wang, H. L. Facile Synthesis of Polyaniline-Supported Pd Nanoparticles and Their Catalytic Properties toward Selective Hydrogenation of Alkynes and Cinnamaldehyde. Chem. Mater. 2008, 20, 2839 - 2844. https://doi.org/10.1021/cm7030416.
    |
  8. Kompaniiets, O. O.; Subotin, V. V.; Poturai, A. S.; Yurchenko, A. A.; Gorlova, A. A.; Bychko, I. B.; Kotenko, I. Y.; Pariiska, O. O.; Ryabukhin, S. V.; Volochnyuk, D. M.; et al. Catalytic Properties of Pd Deposited on Polyaniline in the Hydrogenation of Quinoline. Chemistry 2024, 6, 738 - 759. https://doi.org/10.3390/chemistry6040044.
    |
  9. Yakukhnov, S. A.; Pentsak, E. O.; Galkin, K. I.; Mironenko, R. M.; Drozdov, V. A.; Likholobov, V. A.; Ananikov, V. P. Rapid “Mix-and-Stir” Preparation of Well-Defined Palladium on Carbon Catalysts for Efficient Practical Use. ChemCatChem 2018, 10, 1869 - 1873. https://doi.org/10.1002/cctc.201700738.
    |
  10. Subotin, V. V.; Ivanytsya, M. O.; Terebilenko, A. V.; Yaremov, P. S.; Pariiska, O. O.; Akimov, Y. M.; Kotenko, I. E.; Sabov, T. M.; Kurmach, M. M.; Ryabukhin, S. V.; et al. Air-Stable Efficient Nickel Catalyst for Hydrogenation of Organic Compounds. Catalysts 2023, 13, 706. https://doi.org/10.3390/catal13040706.
    |
  11. Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. A Heterogeneous Nickel Catalyst for the Hydrogenolysis of Aryl Ethers without Arene Hydrogenation. J. Am. Chem. Soc. 2012, 134, 20226 - 20229. https://doi.org/10.1021/ja3085912.
    | |
  12. Gao, F.; Webb, J. D.; Hartwig, J. F. Chemo- and Regioselective Hydrogenolysis of Diaryl Ether C–O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Lignin-Related Fragments. Angew. Chem. Int. Ed. 2016, 55, 1474 - 1478. https://doi.org/10.1002/anie.201509133.
    | |
  13. Leonard, D. N.; Franzen, S. Is Pd₂(DBA)₃ a Feasible Precursor for the Synthesis of Pd Nanoparticles? J. Phys. Chem. C 2009, 113, 12706 - 12714. https://doi.org/10.1021/jp903417r.
    |
  14. Noh, J. S.; Schwarz, J. A. Effect of HNO₃ Treatment on the Surface Acidity of Activated Carbons. Carbon 1990, 28 (5), 675 - 682. https://doi.org/10.1016/0008-6223(90)90069-B.
    |
  15. El-Hendawy, A. A. A. Influence of HNO₃ Oxidation on the Structure and Adsorptive Properties of Corncob-Based Activated Carbon. Carbon 2003, 41 (4), 713 - 722. https://doi.org/10.1016/S0008-6223(03)00029-0.
    |
  16. ShamsiJazeyi, H.; Kaghazchi, T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J. Ind. Eng. Chem., 2010, 16, 852 - 858. https://doi.org/10.1016/j.jiec.2010.03.012.
    |
  17. Takaoka, M.; Yokokawa, H.; Takeda, N. The effect of treatment of activated carbon by H2O2 or HNO3 on the decomposition of pentachlorobenzene. App. Catal. B: Env. 2007, 74, 179 - 186. https://doi.org/10.1016/j.apcatb.2007.02.009.
    |
  18. Liang, Z.; Guo, S.; Dong, H.; Li, Z.; Liu, X.; Li, X.; Kang, H.; Zhang, L.; Yuan, L.; Zhao, L. Modification of Activated Carbon and Its Application in Selective Hydrogenation of Naphthalene. ACS Omega 2022, 7, 38550 - 38560. https://doi.org/10.1021/acsomega.2c03914.
    | |

Downloads

Published

2025-05-24

How to Cite

(1)
Yurchenko, O. O.; Poturai, A. S. Catalytic Performance of Pd Deposited on Various Carriers in Hydrogenation of Quinoline. J. Org. Pharm. Chem. 2025, 23, 23-28.

Issue

Section

Original Researches