The chromatographic study of complexation of functionalized calix[4,8]arenes with aromatic aldehydes

Authors

  • O. I. Kalchenko "Institute of Organic Chemistry, National Academy of Sciences of Ukraine", Ukraine
  • S. O. Cherenok "Institute of Organic Chemistry, National Academy of Sciences of Ukraine", Ukraine
  • A. V. Solovyov "University of California", United States

DOI:

https://doi.org/10.24959/ophcj.19.958

Keywords:

calixarenes, aromatic aldehydes, inclusion complexes, stability constants, liquid chromatography, molecular modeling

Abstract

Aim. To study the Host-Guest complexation of octakis(diphenoxyphosphoryloxy)-tetramethylcalix[4]resorcinarene (PRA), 5,17-bis(N-tolyl-iminomethyl)-25,27-dipropoxycalix[4]arene (IC4A), 5,11,17,23-tetrakis(diisopropoxyphosphonyl)-25,26,27,28-tetra-propoxycalix[4]arene (PC4A) and oktakis(diethoxyphosphoryloxy)-tert-butylcalix[8]arene (PC8A)with benzaldehyde, salicylaldehyde, p-anisaldehyde, and veratraldehyde by RP HPLC and molecular modeling methods.

Results and discussion. The stability constants of Host-Guest complexes (KA = 57 M-1 – 1649 M-1) strongly depend on the calixarene structure and the aromatic aldehyde nature. The enhancement of the complexing properties of calixarenes is observed in the row of PRA < IC4A < PC4A < PC8A. The volume of the calixarene molecular cavity plays the most important role in binding of aldehydes.

Experimental part. The stability constants of calixarene complexes with aldehydes were determined by RP HPLC method in acetonitrile-water (80 : 20, v/v) solution. The RP HPLC analysis was performed using a LiChrosorb RP-18 column. Molecular modeling of calixarene complexes was carried out using a Hyper Chem 8.0 program.

Conclusions.The Host-Guest complexation data can be used as a useful tool in design of calixarene based sensor devices for determination of the aromatic aldehydes in air or preparation of chromatographic phases for analysis of aldehydes in solutions.

Downloads

Download data is not yet available.

References

  1. Gutsche, C. D. (2008). Calixarenes: An introduction.Cambridge : Royal Society of Chemistry.
  2. Asfari, Z., Böhmer, V., Harrowfield, J., Vicens J. (eds) (2001). Calixarenes.Dordrecht, TheNetherlands: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47522-7
  3. Neri, P., Sessler, J. L., Wang, M.–X. (eds) (2016). Calixarenes and beyond. TheSwitzerland : Springer.
  4. Vicens, J., Harrowfield, J. (eds) (2007). Calixarenes in the Nanoworld.Dordrecht, TheNetherlands : Springer.
  5. Kalchenko, O.I ., Kalchenko, V. I.(2014). Chromatoraphy in calixarene chemistry. Kyiv : Naukova Dumka.
  6. Kalchenko, O., Lipkowski, J., Kalchenko, V., Atwood, J. (Eds). (2017). Supramolecular and analytical chemistry of calixarenes. In: Comprehensive Supramolecular Chemistry II.Oxford : Elsevier, 239–261.
  7. Rodik, R. V., Boyko, V. I., Kalchenko, V. I. Reitz, A. B., Rahman, A., Choudhary, M. I. (Eds). (2016). Calixarenes in biotechnology and bio–medical researches In : Frontiers in Medicinal Chemistry.Sharjah,United Arab Emirates: Bentham Science Publishers, 8, 206–301.
  8. Shulov, I., Rodik, R. V., Arntz, Y., Reisch, A., Kalchenko, V. I., Klymchenko, A. S. (2016). Protein–Sized Bright Fluorogenic Nanoparticles Based on Cross–Linked Calixarene Micelles with Cyanine Corona. Angewandte Chemie International Edition, 55 (51), 15884–15888. https://doi.org/10.1002/anie.201609138
  9. Tauran, Y., Brioude, A., Kim, B., Perret, F., Coleman, A. (2013). Anionic Calixarene–Capped Silver Nanoparticles Show Species–Dependent Binding to Serum Albumins. Molecules, 18 (5), 5993–6007. https://doi.org/10.3390/molecules18055993
  10. Valluru, G., Georghiou, P. E., Sleem, H. F., Perret, F., Montasser, I., Grandvoinnet, A., … Coleman, A. W. (2014). Molecular recognition of nucleobases and amino acids by sulphonato–calixnaphthalene–capped silver nanoparticles. Supramolecular Chemistry, 26 (7–8), 561–568. https://doi.org/10.1080/10610278.2013.872247
  11. Peters, M. S., Li, T., Schrader, T. (2012). Interactions of calix[n]arenes with nucleic acids. Nat. Prod. Commun, 7, 409–417.
  12. Komisarenko, S. V., Kosterin, S. O., Lugovskoy, E. V., Cherenok, S. O., Tanchuk, V. Yu., Vovk, A. I., Kalchenko, V. I. Gawriszewska, P., Smolenski, P. (Eds). (2014). Synthesis and characterization of calixarene methylene bisphosphonic acids as effectors of biochemical processes In: Ligands : synthesis, characterization and role in biotechnology.New York : Nova Science Publishers, Inc, 67–116.
  13. Doolan, A. M., Rennie, M. L.,Crowley, P. B. (2018). Protein recognition by functionalized sulfonatocalix[4]arenes. Chem. Eur. J., 24, 984–991. https://doi.org/10.1002/chem.201704931
  14. Alex, J. M., Rennie, M. L., Volpi, S., Sansone, F., Casnati, A., & Crowley, P. B. (2018). Phosphonated Calixarene as a “Molecular Glue” for Protein Crystallization.CrystalGrowth & Design, 18 (4), 2467–2473. https://doi.org/10.1021/acs.cgd.8b00092
  15. Koshets, I. A., Kazantseva, Z. I., Belyaev, A. E., Kalchenko, V.I.(2009). Sensitivity of resorcinarene films towards aliphatic alcohols. Sensors and Actuators B: Chemical, 140 (1), 104–108. https://doi.org/10.1016/j.snb.2009.04.014
  16. Boiko, V. I., Kalchenko, V. I., Esipenko, А. А. (2014). Chiral calixarenes. Saarbrücken: Lambert Academic Publishing.
  17. Karpus, A., Yesypenko, O., Boiko, V., Daran, J.–C., Voitenko, Z., Kalchenko, V., & Manoury, E. (2018). Synthesis of an Enantiomerically Pure Inherently Chiral Calix[4]Arene Phosphonic Acid and Its Evaluation as an Organocatalyst. The Journal of Organic Chemistry, 83 (3), 1146–1153. https://doi.org/10.1021/acs.joc.7b02312
  18. Brühne, F., Wright, E. (2007). “Benzaldehyde”, Ullmann’s Encyclopedia of Industrial Chemistry (7th ed.). Weinheim : Wiley, 11.Fahlbusch, K.–G., Hammerschmidt, F.–J., Panten, J., Pickenhagen, W., Schatkowski, D., Bauer, K., … Surburg, H. (2003). Flavors and Fragrances. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a11_141
  19. Fahlbusch, K.–G., Hammerschmidt, F.–J., Panten, J., Pickenhagen, W., Schatkowski, D., Bauer, K., … Surburg, H. (2003). Flavors and Fragrances. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a11_141
  20. Kalchenko, O. I., Lipkowsk, J., Kalchenko, V. I., Vysotsky, M. A., & Markovsky, L. N. (1998). Effect of Octakis(diethoxyphosphoryloxy)–tert–butyl-calix[8]arene in Mobile Phase on the Reversed–Phase Retention Behavior of Aromatic Compounds: Host–Guest Complex Formation and Stability Constants Determination. Journal of Chromatographic Science, 36 (5), 269–273. https://doi.org/10.1093/chromsci/36.5.269
  21. Lipkowski, J., Kalchenko, O., Slowikowska, J., Kalchenko, V. I., Lukin, O. V., Markovsky, L. N., Nowakowski, R. (1998). Host–guest interaction of calix[4]resorcinarenes with benzene derivatives in condition of reversed–phase high performance liquid chromatography. Determination of stability constants. J. Phys. Org. Chem., 11, 426–435. https://doi.org/10.1002/(sici)1099-1395(199806)11:6<426::aid-poc963>3.3.co;2-i
  22. Diederich, F. (1990). Molecular recognition in aqueous solution : Supramolecular complexation and catalysis. Journal of Chemical Education, 67 (10), 813. https://doi.org/10.1021/ed067p813
  23. Benzaldehyde. (n.d.). Available at: http://en.wikipedia.org/wiki/Benzaldehyde
  24. Hansch, C., Leo, A., Hoekman, D. (1995). Exploring QSAR – Hydrophobic, Electronic, and Steric Constants.Washington,DC: American Chemical Society, 29.
  25. 25. Chemspider. (n.d.). Available at: www.chemspider.com/Chemical-Structure.21105937.html
  26. 26. Chemspider. (n.d.). Available at: www.chemspider.com/Chemical-Structure.21106008.html
  27. Kalchenko, V. I., Rudkevich, D. M., Shivanyuk, A. N., Tsimbal, I.F., Pirozhenko, V. V., Markovsky, L. N. (1994). Phosphorylated octahydroxy[14]methacyclophanes. Zhurn. Obshch. Chim., 64, 731–742.
  28. Solovyov, A., Cherenok, S., Tsymbal, I., Failla, S., Consiglio, G. A., Finocchiaro, P., & Kalchenko, V. (2001). Calix[4]arenes bearing–amino– or –hydroxyphosphonic acid fragments at the upper rim. Heteroatom Chemistry, 12 (2), 58–67. https://doi.org/10.1002/hc.2
  29. Solovyov, A. V., Cherenok, S. O., Kalchenko, O. I., Atamas, L. I., Kazantseva, Z. I., Koshets, I. A., … Kalchenko, V. I. (2011). Synthesis and complexation of amphiphilic calix[4]arene phosphonates with organic molecules in solutions and Langmuir-Blodgett films. Journal of Molecular Liquids, 159 (2), 117–123. https://doi.org/10.1016/j.molliq.2010.12.007
  30. Product Evaluation. (n.d.). Available at: https://www.hyper.com/Download/AllDownloads/tabid/470/Default.aspx

Downloads

Published

2019-03-13

How to Cite

(1)
Kalchenko, O. I.; Cherenok, S. O.; Solovyov, A. V. The Chromatographic Study of Complexation of Functionalized calix[4,8]arenes With Aromatic Aldehydes. J. Org. Pharm. Chem. 2019, 17, 36-41.

Issue

Section

Original Researches